\(\dfrac{1}{\left(1+a^2\right)}+\dfrac{1}{\left(1+b^2\right)}\ge\dfrac{2}{\left(1+ab\right)}\)
\(\Leftrightarrow\left(1+a^2\right)\left(1+ab\right)+\left(1+a^2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow1+b^2+ab+ab^3+1+a^2+ab+a^3b-2\left(1+a^2+b^2+a^2b^2\right)\ge0\)
\(\Leftrightarrow ab\left(a^2-2ab+b^2\right)-\left(a^2+2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)
Điều này hiển nhiên đúng do ab \(\ge\) 1, (a-b)2 \(\ge\) 0
Dấu "=" xảy ra khi và chỉ khi a = b = 1