CMR vs mọi SNT>3 có hiệu = 2 thì tổng của chúng là bội của 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì là tổng của 2 số nguyên tố ra số nguyên tố nên tổng phải là số lẻ
Mà lẻ + lẻ = chẳn nên phải có 1 số chẳn
Vậy 1 số là 2
Số còn lại sẽ là số bé nhất có thể
Nếu là 3 thì hiệu sẽ không phải là số nguyên tố
Vậy là số 5
Suy ra 2 SNT đó là 2 và 5
Nếu là số 3 thì
Giả sử p và p + 2 là số nguyên tố lớn hơn 3. Khi đó p không chia hết cho 3. Áp dụng định lí phép chia có dư ta có:
p = 3q + 1 hoặc p = 3q + 2 với q nguyên dương. Vì p + 2 cũng là số nguyên tố nên không thể xảy ra p = 3q + 1 (vì nếu trái lại thì p + 2 = 3q + 1 + 2 = 3q + 3 là hợp số). Vậy p = 3q + 2, suy ra 3q = p - 2, suy ra q là ước của p - 2, vì p > 3 nên p lẻ, suy ra p -2 lẻ và do đó q lẻ. Khi đó ta có p + p + 2 = 2(p + 1) = 2(3q + 2 + 1) = 6(q + 1) chia hết cho 12 (vì q lẻ).
Hok tot
Giải
. p + (p+2) = 2p + 2 = 2.(p+1)
. p là SNT > 3 \(\Rightarrow\)\(lẻ\Rightarrow p+1\)chẵn
\(\Rightarrow\left(p+1\right)⋮2\) ( 1 )
- Trong 3 STN liên tiếp : p;p+1;p+2 có 1 số \(⋮3\)
Vì p;p+2 là 2 SNT > 6 nên p không\(⋮3\); p+ 2 ko \(⋮\)3
\(\Rightarrow\left(p+1\right)⋮3\) ( 2 )
\(\Rightarrow2\left(p+1\right)⋮12\)
Vậy ..............