K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9

ta thấy : các phân số của biểu thức E đều bé hơn 1.

Suy ra: biểu thức E >6.

Mà 6 là số nguyên dương .

nên biểu thức E không phải là số nguyên (đpcm)

 

5 tháng 7 2018

c )D = 1 + 4 + 4^2 + 4^3 + ... + 4^69

D = ( 1 + 4 )  + ( 4^2 + 4^3 ) + (  4^4 + 4^5 ) + ... + ( 4^68 + 4^69 )

D = 5 + 4^2( 1 + 4 ) + 4^4( 1 + 4 ) + ... + 4^68( 1 + 4 )

D = 5 + 4^2 . 5 + 4^4 . 5 + ... + 4^68 . 5

D = 5( 1 + 4^2 + 4^4 + ... + 4^68 ) 

4 tháng 3 2017

Ta thấy: \(\frac{1}{1!}=\frac{1}{1}=1\)

 \(\frac{1}{2!}=\frac{1}{1.2}\)

\(\frac{1}{3!}=\frac{1}{1.2.3}=\frac{1}{2.3}\)

\(\frac{1}{4!}=\frac{1}{1.2.3.4}< \frac{1}{3.4}\)

......

\(\frac{1}{2015!}=\frac{1}{1.2.3...2015}< \frac{1}{2014.2015}\)

Cộng vế với vế lại ta được: 

\(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{2015!}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)

Mà \(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}=2-\frac{1}{2015}< 2\)

=> \(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{2015!}< 2\)=> E < 2

Vậy E < 2

\(E=-\dfrac{1}{3}\cdot\left(1+2+3\right)-\dfrac{1}{4}\left(1+2+3+4\right)-...-\dfrac{1}{50}\left(1+2+3+...+50\right)\)

\(=\dfrac{-1}{3}\cdot\dfrac{3\cdot4}{2}-\dfrac{1}{4}\cdot\dfrac{4\cdot5}{2}-...-\dfrac{1}{50}\cdot\dfrac{50\cdot51}{2}\)

\(=\dfrac{-4}{2}-\dfrac{5}{2}-...-\dfrac{51}{2}\)

\(=\dfrac{-\left(4+5+...+51\right)}{2}\)

\(=\dfrac{-\left(51+4\right)\cdot\dfrac{48}{2}}{2}=-\dfrac{1320}{2}=-660\)

15 tháng 7 2016

@Đỗ Nguyễn Như Bình \(\frac{2}{3^2}\) hay là \(\frac{2^2}{3}\) hay là \(\left(\frac{2}{3}\right)^2\) vậy em???????????