K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2021

4 số không chia hết cho 5 thì số dư của các số khi chia cho 5 thuộc tập {1; 2; 3; 4}

Giả sử gọi 4 số đó là a, b, c, d khi chia cho 5 có số dư lần lượt là 1; 2; 3; 4

Ta có

\(a-1⋮5;b-2⋮5;c-3⋮5;d-4⋮5\)

\(\Rightarrow\left(a-1\right)+\left(b-2\right)+\left(c-3\right)+\left(d-4\right)=a+b+c+d-10⋮5\)

\(\Rightarrow a+b+c+d⋮5\)

8 tháng 10 2016

Bài thiếu dữ kiện

11+12+13+17=53 có chia hết cho 4 không?

18 tháng 10 2015

4 số không chia hết cho 5 là 5k+1, 5k+2,5k+3, 5k+4

=>Tổng của các số dư là:

1+2+3+4=10 chia hết cho 5

Vậy tổng của chúng chia hết cho 5

3 tháng 9 2015

Gọi 4 số đó là 5k+1; 5k+2; 5k+3; 5k+4

Ta có:

(5k+1)+(5k+2)+(5k+3)+(5k+4) = 5k+1+5k+2+5k+3+5k+4

 = 5k.(1+1+1+1)+(1+2+3+4)

 = 5k.4+10

Mà 5k.4 chia hết cho 5 và 10 chia hết cho 5 => tổng của 4 số tự nhiên không chia hết cho 5 chia hết cho 5

20 tháng 10 2015

số đó chia hết thì tùy thuộc vào số dư

nếu các số dư cộng với nhau chia hết cho 5 thì tổng các số cũng chia hết cho 5

15 tháng 10 2017

Gọi 4 số đó là a+1 ; a+2 ; a+3 ; a+4.

4 số đó chia 5 được các số dư khác nhau: Các số dư là: 1; 2; 3 và 4.

Giả sử a+1 : 5 dư 1; ...

=> [(a+1)-1]=  a chia hết cho 5; ...

Tổng của chúng là:

(a+1) + (a+2) + (a+3) + (a+4) = a+1 + a+2 + a+3 + 4 = 5a + 1 + 2 + 3 + 4 = 5a + 10 

*Vì 5a chia hết cho 5 

và 10 chia hết cho 5

=> tổng của 4 số đó chia hết cho 5.

15 tháng 10 2017

4 số không chia hết cho 5 đc các số dư khác nhau là 5k+1,5k+2,5k+3,5k+4

tổng của chúng là 20k+10 sẽ chia hết cho 5

vậy tổng 4 số đó chia hết cho 5

25 tháng 8 2015

Ta có : Số dư khi chia cho 5 là các số dư: 1;2;3;4 (1)

Gọi 4 số đó là: 5k + 1 ; 5p + 2 ;  5q + 3 ; 5r  + 4 

Thay vào (1) ta có:
5k + 1 + 5p + 2 + 5q + 3 + 5r + 4 = 5 x (k+p+q+r) + (1+2+3+4)

                                                 = 5 x (k+p+q+r) + 10 = 5 x (k+p+q+r+2)

Vậy chia hết cho 5

14 tháng 10 2017

cho 4 số tự nhiên không chia hết cho 5 và khi chia cho 5 được những số dư khác nhau. chứng minh rằng tổng của chúng chia hết cho 5

Gọi 4 số đó là : a ; a + 1 ; a + 2 ; a + 3 và a + 4

4 số đo chia 5 được những số dư khác nhau => các số dư là : 1 ; 2 ; 3 và 4

G/sử a + 1 ; 5 dư 1 ; -----------------

=> [ ( a + 1 ) - 1 ] = a chia hết cho 5 ; .................

Tổng của chúng là :

( a + 1 ) + ( a + 2 ) + ( a + 3 ) + ( a + 4 ) + ( a + 5 ) = a + a + 1 + a + 2 + a + 3 + a+ 4 + a+ 5 = 5a + 1 + 2 + 3 +4 = 5a + 10

Vì 5a chia hết cho 5 và 10 chia hết cho 5 nên tổng của 4 số đó chia hết cho 5

13 tháng 7 2016

Các số tự nhiên không chia hết cho 5 sẽ có dạng : \(5k\pm1;5k\pm2\)  (k thuộc N)

Ta giả sử các số đó là \(a=5k+1,b=5k-1,c=5k-2,d=5k+2\)

\(\Rightarrow a+b+c+d=\left(5k+1\right)+\left(5k-1\right)+\left(5k-2\right)+\left(5k+2\right)=20k\)

Vì 20k chia hết cho 5 nên a + b + c + d chia hết cho 5 (đpcm)

 

13 tháng 7 2016

Gọi 4 số đó lần lượt là a ; b ; c ; d

Đặt:

a = 5n + 1

b = 5n + 2

c = 5n + 3

d = 5n + 4

a + b + c + d

= (5n + 1) + (5n + 2) + (5n + 3) + (5n + 4)

= 20n + 10

=> a + b + c + d \(⋮\) 5