cho 4 số không chia hết cho 5,khi chia cho 5 được những số dư khác nhau .Chứng tỏ rằng tổng của 4 số này chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài thiếu dữ kiện
11+12+13+17=53 có chia hết cho 4 không?
4 số không chia hết cho 5 là 5k+1, 5k+2,5k+3, 5k+4
=>Tổng của các số dư là:
1+2+3+4=10 chia hết cho 5
Vậy tổng của chúng chia hết cho 5
Gọi 4 số đó là 5k+1; 5k+2; 5k+3; 5k+4
Ta có:
(5k+1)+(5k+2)+(5k+3)+(5k+4) = 5k+1+5k+2+5k+3+5k+4
= 5k.(1+1+1+1)+(1+2+3+4)
= 5k.4+10
Mà 5k.4 chia hết cho 5 và 10 chia hết cho 5 => tổng của 4 số tự nhiên không chia hết cho 5 chia hết cho 5
số đó chia hết thì tùy thuộc vào số dư
nếu các số dư cộng với nhau chia hết cho 5 thì tổng các số cũng chia hết cho 5
Gọi 4 số đó là a+1 ; a+2 ; a+3 ; a+4.
4 số đó chia 5 được các số dư khác nhau: Các số dư là: 1; 2; 3 và 4.
Giả sử a+1 : 5 dư 1; ...
=> [(a+1)-1]= a chia hết cho 5; ...
Tổng của chúng là:
(a+1) + (a+2) + (a+3) + (a+4) = a+1 + a+2 + a+3 + 4 = 5a + 1 + 2 + 3 + 4 = 5a + 10
*Vì 5a chia hết cho 5
và 10 chia hết cho 5
=> tổng của 4 số đó chia hết cho 5.
4 số không chia hết cho 5 đc các số dư khác nhau là 5k+1,5k+2,5k+3,5k+4
tổng của chúng là 20k+10 sẽ chia hết cho 5
vậy tổng 4 số đó chia hết cho 5
Ta có : Số dư khi chia cho 5 là các số dư: 1;2;3;4 (1)
Gọi 4 số đó là: 5k + 1 ; 5p + 2 ; 5q + 3 ; 5r + 4
Thay vào (1) ta có:
5k + 1 + 5p + 2 + 5q + 3 + 5r + 4 = 5 x (k+p+q+r) + (1+2+3+4)
= 5 x (k+p+q+r) + 10 = 5 x (k+p+q+r+2)
Vậy chia hết cho 5
cho 4 số tự nhiên không chia hết cho 5 và khi chia cho 5 được những số dư khác nhau. chứng minh rằng tổng của chúng chia hết cho 5
Gọi 4 số đó là : a ; a + 1 ; a + 2 ; a + 3 và a + 4
4 số đo chia 5 được những số dư khác nhau => các số dư là : 1 ; 2 ; 3 và 4
G/sử a + 1 ; 5 dư 1 ; -----------------
=> [ ( a + 1 ) - 1 ] = a chia hết cho 5 ; .................
Tổng của chúng là :
( a + 1 ) + ( a + 2 ) + ( a + 3 ) + ( a + 4 ) + ( a + 5 ) = a + a + 1 + a + 2 + a + 3 + a+ 4 + a+ 5 = 5a + 1 + 2 + 3 +4 = 5a + 10
Vì 5a chia hết cho 5 và 10 chia hết cho 5 nên tổng của 4 số đó chia hết cho 5
Các số tự nhiên không chia hết cho 5 sẽ có dạng : \(5k\pm1;5k\pm2\) (k thuộc N)
Ta giả sử các số đó là \(a=5k+1,b=5k-1,c=5k-2,d=5k+2\)
\(\Rightarrow a+b+c+d=\left(5k+1\right)+\left(5k-1\right)+\left(5k-2\right)+\left(5k+2\right)=20k\)
Vì 20k chia hết cho 5 nên a + b + c + d chia hết cho 5 (đpcm)
4 số không chia hết cho 5 thì số dư của các số khi chia cho 5 thuộc tập {1; 2; 3; 4}
Giả sử gọi 4 số đó là a, b, c, d khi chia cho 5 có số dư lần lượt là 1; 2; 3; 4
Ta có
\(a-1⋮5;b-2⋮5;c-3⋮5;d-4⋮5\)
\(\Rightarrow\left(a-1\right)+\left(b-2\right)+\left(c-3\right)+\left(d-4\right)=a+b+c+d-10⋮5\)
\(\Rightarrow a+b+c+d⋮5\)