K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow x+2-3xm-m=5\)

\(\Leftrightarrow x\left(1-3m\right)=5+m-2=m+3\)

Để đây là pt bậc nhất một ẩn thì 1-3m<>0

hay m<>1/3

b: Khi m=1 thì \(x\left(1-3\right)=1+3=4\)

=>-2x=4

hay x=-2

2 tháng 3 2018

a. Ta có: x+2-m(3x+1)=5

\(\Leftrightarrow\)x(1-3m)-3-m=0 (1)

Để pt trên là pt bậc nhất thì (1-3m) khác 0

\(\Rightarrow m\ne\dfrac{1}{3}\)

b. Thay m=1 vào (1) ta có:

x(1-3.1)-3-1=0

\(\Leftrightarrow\) x=-2

2(m-1)x+3=2m-5

=>x(2m-2)=2m-5-3=2m-8

a: (1) là phương trình bậc nhất một ẩn thì m-1<>0

=>m<>1

b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0

=>m=1

c: Để (1) có nghiệm duy nhất thì m-1<>0

=>m<>1

d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0

=>Ko có m thỏa mãn

e: 2x+5=3(x+2)-1

=>3x+6-1=2x+5

=>x=0

Khi x=0 thì (1) sẽ là 2m-8=0

=>m=4

22 tháng 3 2022

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

17 tháng 4 2020

a. Pt trên là pt bậc nhất↔ m-1≠≠ 0

                                      ⇔ m≠≠ 1

b. +Với m-1=0 ⇔m=1 pt trên⇔0x=2m-1 (pt vô nghiệm)

+Với m-1≠≠ 0⇔m≠≠ 1 pt trên ⇔x=2m−1m−12m−1m−1 

Kết luận :Với m=1 ptvn , với m≠≠ 1 pt có nghiệm duy nhất x=2m−1m−1

a: Để phương trình là phươg trình bậc nhất một ẩn thì m-2<>0

hay m<>2

b: Ta có: 3x+7=2(x-1)+8

=>3x+7=2x-2+8

=>3x+7=2x+6

=>x=-1

Thay x=-1 vào (1), ta được:

-2(m-2)+3=3m-13

=>-2m+4+3=3m-13

=>-2m+7=3m-13

=>-5m=-20

hay m=4(nhận)