Cho hthang ABCD (AB//CD) có M là giao điểm của AD và BC,N là giao điểm của 2 đường chéo. Gọi I và K theo thứ tự là giao điểm của MN với AB và CD. Chứng minh I là trung điểm của AB,K là trung điểm của CD
Bài 2: Cho hbh ABCD,1 đường thẳng đi qua D cắt AC,AB,CB theo thứ tự ở M,N,K. Chứng minh rằng:
a) DM^2=MN.MK
b) DM/ DN+DM/DK=1
Câu 1:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD