Cho tam giác ABC. D là một điểm trên cạnh BC, qua D kẻ các đường thẳng song song vs AB, AC chúng cắt AB,AC lần lượt tại E và F
chứng minh: \(\dfrac{AE}{AB}+\dfrac{AF}{AC}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì DF//AB (gt) . Áp dụng định lý Talet ta có : \(\frac{AF}{AC}=\frac{BD}{BC}\)(1)
Vì DE//AC (gt) . Áp dụng định lý Talet ta có : \(\frac{AE}{AB}=\frac{CD}{BC}\)(2)
Từ (1);(2) \(\Rightarrow\frac{AE}{AB}+\frac{AF}{AC}=\frac{BD}{BC}+\frac{CD}{BC}=\frac{BD+CD}{BC}=\frac{BC}{BC}=1\)(Đpcm)
Do DE song song BC
=> Theo định lý Talet, DA/DB = EA/EC
Mà DA/DB= EC/EA
=> EC=EA
=> E là trung điểm AC
=> DE là đường trung bình của tam giác ABC
=> D cũng là trung điểm AB
Trong ∆ ABC ta có: DE // AC (gt)
Suy ra: \(\frac{AE}{AB}=\frac{CD}{CB}\)(định lí Ta-lét) (1)
Lại có: DF // AB (gt)
Suy ra: \(\frac{AF}{AC}=\frac{BD}{BC}\)(định lí Ta-lét) (2)
Cộng trừ vế (1) và (2), ta có:
\(\frac{AE}{AB}+\frac{AF}{AC}=\frac{CD}{BC}+\frac{BD}{BC}=\frac{BC}{BC}=1\)
\(\dfrac{AE}{AB}+\dfrac{AF}{AC}=\dfrac{DC}{BC}+\dfrac{BD}{BC}=1\)