cho tam giác ABC, G là trọng tâm. Qua G vẽ đường thẳng song song với cạnh AC, cắt các cạnh AB, BC lần lượt ở D và E. Tính độ dài đoạn thẳng DE, biết AD+EC=16cm và chu vi tam giác ABC bằng 75cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết ta có AD=DF=FB.
Có nghĩa là: D là trung điểm của AF, F là trung điểm của DB
Xét tam giác AFG, ta có:
\(\Rightarrow\)DE là đường trung bình, Vậy E là trung điểm
Xét hình thangDECB, ta có:
=> G là trung điểm
=> GE =GC
Mà EG=GA (cmt)
=> GE=GC=GA
Tam giác AFG có DE là đường trung bình
=>DE=\(\frac{1}{2}\)FG
Ta có FG là đường trung bình cua hình thang DECB
=>FG = \(\frac{DE+BC}{2}\)
Ta phải chứng minh DE+FG=BC
\(\frac{1}{2}\)FG + \(\frac{DE+BC}{2}\) = BC
\(\frac{1}{2}\)(FG+DE+BC)=BC
FG+DE+BC= 2BC
FG+DE = 2BC - BC
FG+DE = BC
b) ta có FG= \(\frac{DE+BC}{2}\)
2FG= \(\frac{1}{2}\)FG +9
2FG - \(\frac{1}{2}\)FG = 9
\(\frac{3}{2}\)FG =9
=> FG=9:\(\frac{3}{2}\)
FG=6cm
mà FG=2DE
=>DE= \(\frac{FG}{2}\)=\(\frac{6}{2}\)=3cm
Qua N kẻ đường thẳng NP // AB (P thuộc BC)
Khi đó ta thấy ngay \(\Delta EBN=\Delta PNB\left(g-c-g\right)\Rightarrow EB=PN;EN=PB\) (1)
Do NP // AB nên \(\widehat{NPC}=\widehat{EPB}\); do DM // BC nên \(\widehat{ADM}=\widehat{EPB}\)
Suy ra \(\widehat{ADM}=\widehat{NPC}\)
Ta cũng có \(\widehat{DAM}=\widehat{PNC}\) (Hai góc đồng vị)
\(\Rightarrow\Delta DAM=\Delta PNC\left(g-c-g\right)\)
\(\Rightarrow AM=PC\) (2)
Từ (1) và (2) suy ra DM + EN = PC + BP = BC.
Để mình làm bài này cho :))
Ta có : \(\dfrac{GK}{BG}=\dfrac{1}{2};\dfrac{BG}{BK}=\dfrac{2}{3}\)
Do DE // AC nên \(\dfrac{AD}{AB}=\dfrac{EC}{BC}=\dfrac{GK}{BK}=\dfrac{1}{3}\)
\(\Rightarrow\) \(\dfrac{AD+EC}{AB+BC}=\dfrac{1}{3}\)
Vì AD + EC = 16cm và AB + BC = 75 - AC
từ đó ta có \(\dfrac{16}{75-AC}=\dfrac{1}{3}\Rightarrow AC=27\left(cm\right)\)
Mà \(\dfrac{DE}{AC}=\dfrac{2}{3}\) hoặc \(\dfrac{DE}{27}=\dfrac{2}{3}\)
\(\Rightarrow\) \(DE=\dfrac{27.2}{3}=18\left(cm\right)\)