K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 2 2018

Lời giải:

Ôn tập góc với đường tròn

a)

Xét tứ giác $BC'B'C$ có \(\widehat{BC'C}=\widehat{BB'C}=90^0\)

\(\Rightarrow BC'B'C\) là tứ giác nội tiếp.

b)

Vì $BC'B'C$ nội tiếp nên \(\widehat{AC'B'}=\widehat{ACB}\)

\(\Leftrightarrow \widehat{NAC'}+\widehat{ANC'}=\widehat{ACB}\)

\(\Leftrightarrow \widehat{NAB}+\widehat{ANM}=\widehat{ACB}\)

\(\Leftrightarrow \frac{1}{2}\text{cung}(NB)+\frac{1}{2}\text{cung} (AM)=\frac{1}{2}\text{cung} (AB)=\frac{1}{2}(\text{cung (AN)+ cung (NB)})\)

\(\Leftrightarrow \frac{1}{2}\text{cung (AM)}=\frac{1}{2}\text{cung (AN)}\Rightarrow AM=AN\)

c)

Xét tam giác $ANC'$ và $ABN$ có:

\(\left\{\begin{matrix} \text{chung góc A}\\ \widehat{ANC'}=\frac{1}{2}\text{cung (AM)}=\frac{1}{2}\text{cung (AN)}=\widehat{ABN}\\ \end{matrix}\right.\)

\(\Rightarrow \triangle ANC'\sim \triangle ABN(g.g)\Rightarrow \frac{AN}{AB}=\frac{AC'}{AN}\)

\(\Leftrightarrow AN^2=AC'AB\).

Mà \(AM=AN\Rightarrow AM^2=AC'.AB\) (đpcm)

10 tháng 2 2018

Cảm ơn rất nhiều ạ!vui

30 tháng 5 2018

A B C D E O F

\(\widehat{\text{AFB}}=\widehat{ADB}=90^0\)

Mà ÀB và ADB là hai góc kề cùng nhìn AB dưới hai góc bằng nhau => ÀDB nội tiếp

b) ta có \(\widehat{ACB}=\widehat{AEB}\)( cùng chắn cung AB)

\(\widehat{DFC}=\widehat{BAF}\)( trong tứ giác nội tiếp góc ngaoif tại một đỉnh bằng góc trong đỉnh còn lại )

\(\Rightarrow\widehat{ACB}+\widehat{FDC}=\widehat{BAF}+\widehat{BAE}=90^0\)

\(\Rightarrow DF\perp CA\)

15 tháng 4 2020

dĐAEDƯÈWEWÈWÉWÈWẺ3GWDFCEWFSCAWECFASEFSAD

a: Xét tứ giác BEDC có

góc BEC=góc BDC=90 độ

=>BEDC là tứ giác nội tiếp

=>góc AED=góc ACB

mà góc A chung

nên ΔAED đồng dạng với ΔABC

b: góc xAC=góc ABC

góc ABC=góc ADE

=>góc xAC=góc ADE

=>Ax//DE

4 tháng 3 2021

mọi người giúp em với ạ em cần gấp

 

4 tháng 3 2021

.

30 tháng 5 2018

a) Ta có\(\widehat{ADB}=\widehat{AFB}=90độ\left(gt\right)\)

Nên tứ giác ABDF nội tiếp ( 2 đỉnh EF cùng nhìn AB với 2 góc bằng nhau)

b) Ta có \(\widehat{AEDC}=90độ\)(góc nội tiếp chắn nửa đường tròn)

Nên ΔACE vuông tại C

Xét 2 tam giác vuông ABD và ACE có

\(\widehat{ABD}=\widehat{AEC}\)(cùng chắn \(\widebat{AC}\))

Nên ΔABD ~ ΔACE

Do đó \(\frac{AB}{AC}=\frac{AD}{AE}\)

Hay AB.AE=AD.AC

c) (Mình nghĩ câu này bạn ghi nhầm, theo mình thì ở đây ta phải chứng minh DF vuông góc AC)

Ta có \(\widehat{DFE}=\widehat{ABD}\)(tứ giác ABDF nội tiếp)

\(\widehat{ABD}=\widehat{AEC}\)(cùng chắn \(\widebat{AC}\))

Do đó \(\widehat{DFE}=\widehat{AEC}\)

Ta lại có 2 góc này ở vị trí so le trong

Nên DF song song EC

Mà EC vuông góc AC

Suy ra DF vuông góc AC

a: góc BEH+góc BFH=90 độ

=>BEHF nội tiếp

b: góc ABK=1/2*sđ cung AK=90 độ

Xét ΔABK vuông tại B và ΔAFC vuông tại F có

góc AKB=góc ACF

=>ΔABK đồng dạng với ΔAFC

4: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

5: Xét ΔHDE và ΔHCB có

góc HDE=góc HCB

góc DHE=góc CHB

=>ΔHDE đồng dạng với ΔHCB

=>DE/CB=HD/HC

=>DE*HC=HD*BC

10 tháng 5 2020

Giải chi tiết:

a) Chứng minh tứ giác AB’HC’ nội tiếp đường tròn.

Xét tứ giác AB’HC’ có ∠AB′H+∠AC′H=900+900=1800⇒∠AB′H+∠AC′H=900+900=1800⇒ Tứ giác AB’HC’ là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800).

b) Gọi I là giao điểm của hai đường thẳng HD và BC. Chứng minh I là trung điểm của đoạn BC.

Ta có ∠ABD=900∠ABD=900 (góc nội tiếp chắn nửa đường tròn) ⇒AB⊥BD⇒AB⊥BD.

Mà CH⊥AB(gt)⇒BD∥CHCH⊥AB(gt)⇒BD∥CH

Chứng minh tương tự ta có CD∥BHCD∥BH.

⇒⇒ Tứ giác BHCD là tứ giác nội tiếp (Tứ giác có các cặp cạnh đối song song)

Mà BC∩HD=I(gt)⇒IBC∩HD=I(gt)⇒I là trung điểm của BC.

c) Tính AHAA′+BHBB′+CHCC′AHAA′+BHBB′+CHCC′.

Ta có:

SHBCSABC=12HA′.BC12AA′.BC=HA′AA′⇒1−SHBCSABC=1−HA′AA′=AA′−HA′AA′=AHAA′SHBCSABC=12HA′.BC12AA′.BC=HA′AA′⇒1−SHBCSABC=1−HA′AA′=AA′−HA′AA′=AHAA′

Chứng minh tương tự ta có: BHBB′=1−SHACSABC;CHCC′=1−SHABSABCBHBB′=1−SHACSABC;CHCC′=1−SHABSABC

⇒AHAA′+BHBB′+CHCC′=1−SHBCSABC+1−SHACSABC+1−SHABSABC=3−SHBC+SHAC+SHABSABC=3−1=2⇒AHAA′+BHBB′+CHCC′=1−SHBCSABC+1−SHACSABC+1−SHABSABC=3−SHBC+SHAC+SHABSABC=3−1=2

25 tháng 4 2022

Viết còn cặc