Tìm nghiệm nguyên của phương trình:\(x^2-4xy+5y^2=16\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=16\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=16\)
Vì \(x;y\in Z\Rightarrow\left(x-2y\right)^2\in Z;y^2\in Z\)
Và \(\left(x-2y\right)^2\ge0,y^2\ge0\)
\(\left(x;y\right)=\left(8;4\right),\left(-8;-4\right),\left(4;0\right),\left(-4;0\right)\)
Ta có các tập nghiệm: \(\left(x;y\right)=\left(8;4\right),\left(-8;-4\right),\left(4;0\right),\left(-4;0\right)\) thì thỏa mãn phương trình
PT \(\Leftrightarrow x^2+\left(-4y\right).x+\left(5y^2-16\right)=0\)
Để PT trên có nghiệm \(\Leftrightarrow\Delta=\left(-4y\right)^2-4\left(5y^2-16\right)\ge0\)
\(\Leftrightarrow16y^2-20y^2+64\ge0\Leftrightarrow-4y^2+64\ge0\Leftrightarrow-4y^2\ge-64\)
\(\Leftrightarrow y^2\le16\Rightarrow-4\le y\le4\)
Đến đây xét các giá trị của y là tìm ra x
\(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=16\)
Ta xét các TH:
TH1: \(\left\{{}\begin{matrix}x-2y=0\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x-2y=4\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)
Vậy ta tìm được cặp số (x; y) là \(\left(8;4\right);\left(4;0\right)\)
Ta có : \(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-16\right)=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y-4\right)^2=0\)
Mà \(\left(x-2y\right)^2\ge0\forall x:y\)
\(\left(y-4\right)^2\ge0\forall y\)
Dấu " = " xảy ra khi :
\(\orbr{\begin{cases}x-2y=0\\y-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2y\\y=4\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=8\\y=4\end{cases}}\)
Vậy \(\left(x;y\right)=\left(8;4\right)\)
\(PT\Leftrightarrow\left(x^2-4xy+4y^2\right)+4x-8y+4+y^2-16=0\)
\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)+4+y^2=16\)
\(\Leftrightarrow\left(x-2y+2\right)^2+y^2=16\)
Vì \(\left(x+2y+2\right)^2+y^2\) là tổng hai số chính phương
nên \(\left(\left(x+2y+2\right)^2;y^2\right)\in\left\{0;16\right\}\)xét 2 TH là ra
\(x^2-4xy+5y^2=2\left(x-y\right)\)
\(\Leftrightarrow x^2-4xy+5y^2-2x+2y=0\)
\(\Leftrightarrow\left(x-2y\right)^2-2\left(x-2y\right)+1+y^2-2y+1=2\)
\(\Leftrightarrow\left(x-2y-1\right)^2+\left(y-1\right)^2=2\)
Vì x,y là số nguyên nên ta có các trường hợp:
TH1: \(\hept{\begin{cases}x-2y-1=1\\y-1=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=6\\y=2\end{cases}}\)
TH2: \(\hept{\begin{cases}x-2y-1=-1\\y-1=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
TH3: \(\hept{\begin{cases}x-2y-1=-1\\y-1=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=2\end{cases}}\)
TH4: \(\hept{\begin{cases}x-2y-1=1\\y-1=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=0\end{cases}}\)
Vậy \(\left(x;y\right)\in\left\{\left(6;2\right),\left(0;0\right),\left(4;2\right),\left(2;0\right)\right\}\)
\(\)
Bạn sửa lại đề đi:
Tìm nghiệm nguyên của phương trình: \(^{x^2-4xy+5y^2+10x-22y+26=0}\)
\(\Leftrightarrow4x^2-4xy+y^2=16-3y^2\)
\(\Leftrightarrow16-3y^2=\left(2x-y\right)^2\ge0\)
\(\Rightarrow y^2\le\dfrac{16}{3}\)
\(\Rightarrow y^2=\left\{1;4\right\}\)
\(\Rightarrow\left[{}\begin{matrix}y=1\\y=2\end{matrix}\right.\)
- Với \(y=1\Rightarrow4x^2-4x+4=16\Leftrightarrow x^2-x-3=0\) (ko có x nguyên thỏa mãn)
- Với \(y=2\Rightarrow4x^2-8x=0\Rightarrow x=2\)
Vậy \(\left(x;y\right)=\left(2;2\right)\)
Theo mình đề đúng là :
\(x^2-4xy+5y^2=17\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=17\)
= 1+16
= 16+1
Ta có bảng sau:
Vậy \(\left(x;y\right)=\left\{\left(9;4\right);\left(-7;-4\right);\left(7;4\right);\left(-9;-4\right);\left(6;1\right);\left(2;-1\right);\left(-2;1\right);\left(-6;-1\right)\right\}\)
mình thấy theo cách này làm như đề trên cũng dc mà :<<