1. Cho (O,R) dây AB cố định. Từ C di động trên (O) dựng hình bình hành CABD. CMR giao điểm hai đường chéo nằm trên 1 đường trong cố định2. Cho BC cố định, I là trung điểm BC, A di động trên mặt phẳng sao cho BA=BC, H là trung điểm của AC, AI cắt BH tại M. Hỏi M di động trên di động trên đường nào thì A di động3. Cho (O,R) BC là dây cố định. A là 1 điểm di động trên (O,R). Lấy M đối xứng...
Đọc tiếp
1. Cho (O,R) dây AB cố định. Từ C di động trên (O) dựng hình bình hành CABD. CMR giao điểm hai đường chéo nằm trên 1 đường trong cố định
2. Cho BC cố định, I là trung điểm BC, A di động trên mặt phẳng sao cho BA=BC, H là trung điểm của AC, AI cắt BH tại M. Hỏi M di động trên di động trên đường nào thì A di động
3. Cho (O,R) BC là dây cố định. A là 1 điểm di động trên (O,R). Lấy M đối xứng với C qua trung điểm I của AB. Hỏi M di động trên đường nào khi A di động
4. Cho A di chuyển trên (O,R) đường kính BC gọi M đối xứng với A qua B, H là hình chiếu của A trên BC, I là trung điểm HC
a. CMR M chuyển động trên (O,R) 1 đường thẳng tròn cố định
b. CMR tam giác AHM đồng dạng tam giác CIA
c. CMR MH vuông góc AI
d MH cắt (O) tại E và F đường thẳng AI cắt (O) tại G. CMR Tổng bình phương các cạnh của tứ giác AEGF ko đổi
bài này trong đề thi hsg toán 9 huyện đan phượng năm nay nhé bạn
Bn cho mk link vs ạ