Cho tam giác ABC có I là trung điểm BC. Lấy E;F bất kì nằm trên AB;AC. CMR: SIEF\(\le\dfrac{1}{2}\) SABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Ta có: S ABC = S CBD (vì có cùng chiều cao hạ từ đỉnh B xuống đáy AC)
S ABC (S CBD) là:
360 : 2 = 180 (cm\(^2\))
Ta có: S BAE = S CAE (vì có cùng chiều cao hạ từ đỉnh A xuống đáy BC)
S BAE (S CAE) là:
360 : 2 = 180 (cm\(^2\))
Ta có: S ABI = S EBI (vì có cùng chiều cao hạ từ đỉnh B xuống đáy AE)
S ABI (S EBI) là:
180 : 2 = 90 (cm\(^2\))
Ta có: S ABI = S AID = 90 cm\(^2\) (vì có cùng chiều cao hạ từ đỉnh A xuống đáy BD)
Vậy diện tích của tam giác AID là 90 cm\(^2\)
a: Xét ΔABI và ΔKCI có
IA=IK
\(\widehat{AIB}=\widehat{KIC}\)
IB=IC
Do đó: ΔABI=ΔKCI
b: Xét tứ giác ABDC có
I là trung điểm của AD
I là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: CD//AB và CD=AB
a: Xét tứ giác ABCE có
D là trung điểm của AC
D là trung điểm của BE
Do đó; ABCE là hình bình hành
Suy ra: BC//AE
b: Xét ΔABC có
AM là đường trung tuyến
BD là đường trung tuyến
AM cắt BD tại I
Do đó: I là trọng tâm của ΔABC
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
A B C E D I M N từ I kẻ IM vuông góc AC , từ B kẻ BN vuông góc AC => IM // BN
áp dụng định lý Menelous vào tam giác BCD có 3 điểm A ,I , E thẳng hàng và cắt 3 cạnh tam giác :
\(\dfrac{EC}{EB}\cdot\dfrac{IB}{ID}\cdot\dfrac{AD}{AC}=1\)
=> 2 . \(\dfrac{IB}{ID}\) . 3/4 = 1
=> \(\dfrac{IB}{ID}=\dfrac{4}{3}\)
\(\Rightarrow\dfrac{DI}{DB}=\dfrac{3}{7}\)
Do IM // BN => \(\dfrac{DI}{DB}=\dfrac{IM}{BN}=\dfrac{3}{7}\)
S abc = \(\dfrac{1}{2}BN\cdot AC\)
S iad = \(\dfrac{1}{2}IM\cdot AD\) \(\Rightarrow\dfrac{Siad}{Sabc}=\dfrac{IM}{BN}\cdot\dfrac{AD}{AC}=\dfrac{3}{7}\cdot\dfrac{3}{4}=\dfrac{9}{28}\)
mà S iad = 18 => S abc = 28*18 : 9 = 56
a: Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó: ΔABI=ΔACI
c: Đề sai rồi bạn
Đây bạn ơi mik chỉ làm đc đến phần cm tia phân giác của câu c thoi