giải phương trình:
\(\dfrac{x-5}{1990}+\dfrac{x-15}{1980}+\dfrac{x-25}{1970}=\dfrac{x-1990}{5}+\dfrac{x-1980}{15}+\dfrac{x-1970}{25}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(\dfrac{x-5}{1990}-1\right)+\left(\dfrac{x-15}{1980}-1\right)+\left(\dfrac{x-25}{1970}-1\right)\\ +\left(\dfrac{x-1990}{5}-1\right)+\left(\dfrac{x-1980}{15}-1\right)+\left(\dfrac{x-1970}{25}-1\right)=0\\ \Leftrightarrow\dfrac{x-1995}{1990}+\dfrac{x-1995}{1980}+\dfrac{x-1995}{1970}+\dfrac{x-1995}{5}\\ +\dfrac{n-1995}{15}+\dfrac{n-1995}{25}=0\\ \Rightarrow\left(x-1995\right)\left(\dfrac{1}{1990}+\dfrac{1}{1980}+\dfrac{1}{1970}+\dfrac{1}{5}+\dfrac{1}{15}+\dfrac{1}{25}\right)=0\)
\(\Rightarrow x-1995=0\\ \Rightarrow x=1995\)
\(\dfrac{x-5}{1990}+\dfrac{x-15}{1980}=\dfrac{x-1990}{5}+\dfrac{x-1980}{15}\\ =>\dfrac{x-5}{1990}-1+\dfrac{x-15}{1980}-1=\dfrac{x-1990}{5}-1+\dfrac{x-1980}{15}-1\\ =>\dfrac{x-1995}{1990}+\dfrac{x-1995}{1980}-\dfrac{x-1995}{5}-\dfrac{x-1995}{15}=0\\ =>\left(x-1995\right).\left(\dfrac{1}{1990}+\dfrac{1}{1980}-\dfrac{1}{5}-\dfrac{1}{15}\right)=0\\ =>x-1995=0\\ =>x=1995\)
x-5/1990+x-15/1980+x-25/1970=x-1990/5+x-1980/15+x-1970/25
<=> (x-5/1990-1)+(x-15/1980-1)+(x-25/1970-1)=(x-1990/5-1)+(x-1980/15-1)+(x-1970/25-1)
<=> x-1995/1990+x-1995/1980+x-1995/1970=x-1995/5+x-1995/15+x-1995/25
<=> (x-1995)(1/1990+1/1980+1/1970-1/5-1/15-1/25)=0
<=> x-1995=0
<=> x=1995
Ta có: \(\frac{x-29}{1970}+\frac{x-27}{1972}+\frac{x-25}{1974}+\frac{x-23}{1976}+\frac{x-21}{1978}+\frac{x-19}{1980}\)\(=\frac{x-1970}{29}+\frac{x-1972}{27}+\frac{x-1974}{25}+\frac{x-1976}{23}+\frac{x-1978}{21}+\frac{x-1980}{19}\)
\(\Leftrightarrow\left(\frac{x-29}{1970}-1\right)+\left(\frac{x-27}{1972}-1\right)+\left(\frac{x-25}{1974}-1\right)+\left(\frac{x-23}{1976}-1\right)+\left(\frac{x-21}{1978}-1\right)+\left(\frac{x-19}{1980}-1\right)\)\(=\left(\frac{x-1970}{29}-1\right)+\left(\frac{x-1972}{27}-1\right)+\left(\frac{x-1974}{25}-1\right)+\left(\frac{x-1976}{23}-1\right)+\left(\frac{x-1978}{21}-1\right)+\left(\frac{x-1980}{19}-1\right)\)
\(\Leftrightarrow\frac{x-1999}{1970}+\frac{x-1999}{1972}+\frac{x-1999}{1974}+\frac{x-1999}{1976}+\frac{x-1999}{1978}+\frac{x-1999}{1980}\)\(=\frac{x-1999}{29}+\frac{x-1999}{27}+\frac{x-1999}{25}+\frac{x-1999}{24}+\frac{x-1999}{21}+\frac{x-1999}{19}\)
\(\Leftrightarrow\left(x-1999\right)\left(\frac{1}{1970}+\frac{1}{1972}+\frac{1}{1974}+\frac{1}{1976}+\frac{1}{1978}+\frac{1}{1980}\right)\)\(=\left(x-1999\right)\left(\frac{1}{29}+\frac{1}{27}+\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)\)
\(\Leftrightarrow\left(x-1999\right)\left(\frac{1}{1970}+\frac{1}{1972}+\frac{1}{1974}+\frac{1}{1976}+\frac{1}{1978}+\frac{1}{1980}-\frac{1}{29}-\frac{1}{27}-\frac{1}{25}-\frac{1}{23}-\frac{1}{21}-\frac{1}{19}\right)=0\)\(\Leftrightarrow\) \(x-1999=0\) (Vì ...khác 0)
\(\Leftrightarrow x=1999\)(thỏa mãn)
Vậy \(x=1999\)
\(\dfrac{x-5}{1990}+\dfrac{x-15}{1980}=\dfrac{x-1980}{15}+\dfrac{x-1990}{5}\)
\(\Leftrightarrow(\dfrac{x-5}{1990}-1)+(\dfrac{x-15}{1980}-1)=(\dfrac{x-1980}{15}-1)+(\dfrac{x-1990}{5}-1)\)
\(\Leftrightarrow\dfrac{x-1995}{1990}+\dfrac{x-1995}{1980}-\dfrac{x-1995}{15}-\dfrac{x-1995}{5}=0\)
\(\Leftrightarrow\left(x-1995\right)\left(\dfrac{1}{1990}+\dfrac{1}{1980}-\dfrac{1}{15}-\dfrac{1}{5}\right)=0\)
\(\Leftrightarrow x-1995=0\)
\(\Leftrightarrow x=1995\)
d) x-5/1990 + x+5/1980 + x-25/1970=x-1990/5 + x-1980/15
\(\Leftrightarrow\left(\frac{x-5}{1990}-1\right)+\left(\frac{x-15}{1980}-1\right)+\left(\frac{x-25}{1970}-1\right)=\left(\frac{x-1990}{5}-1\right)+\left(\frac{x-1980}{15}-1\right)+\left(\frac{x-1970}{25}-1\right)\)
\(\Leftrightarrow\frac{x-1995}{1990}+\frac{x-1995}{1980}+\frac{x-1995}{1970}=\frac{x-1995}{5}+\frac{x-1995}{15}+\frac{x-1995}{25}\).
\(\Leftrightarrow\frac{x-1995}{1990}+\frac{x-1995}{1980}+\frac{x-1995}{1970}-\frac{x-1995}{5}+\frac{x-1995}{15}+\frac{x-1995}{25}=0\)
\(\Leftrightarrow\left(x-1995\right)\left(\frac{1}{1990}+\frac{1}{1980}+\frac{1}{1970}-\frac{1}{5}+\frac{1}{15}+\frac{1}{25}\right)=0\)
\(\Leftrightarrow x-1995=0\).Do \(\frac{1}{1990}+\frac{1}{1980}+\frac{1}{1970}-\frac{1}{5}+\frac{1}{15}+\frac{1}{25}\ne0\)
\(\Leftrightarrow x=1995\)
xong r nhé. thanks m.n
Ta có: \(\frac{x-5}{1990}+\frac{x-15}{1980}+\frac{x-25}{1970}=\frac{x-1990}{5}+\frac{x-1980}{15}+\frac{x-1970}{25}\)
\(\Leftrightarrow\)\(\frac{x-5}{1990}+\frac{x-15}{1980}+\frac{x-25}{1970}-3=\frac{x-1990}{5}+\frac{x-1980}{15}+\frac{x-1970}{25}-3\)
\(\Leftrightarrow\)\(\frac{x-5}{1990}-1+\frac{x-15}{1980}-1+\frac{x-25}{1970}-1=\frac{x-1990}{5}-1+\frac{x-1980}{15}-1+\frac{x-1970}{25}-1\)\(\Leftrightarrow\)\(\frac{x-1995}{1990}+\frac{x-1995}{1980}+\frac{x-1995}{1970}=\frac{x-1995}{5}+\frac{x-1995}{15}+\frac{x-1995}{25}\)
\(\Leftrightarrow\)\(\frac{x-1995}{1990}+\frac{x-1995}{1980}+\frac{x-1995}{1970}-\frac{x-1995}{5}-\frac{x-1995}{15}-\frac{x-1995}{25}=0\)
\(\Leftrightarrow\)\(\left(x-1995\right)\left(\frac{1}{1990}+\frac{1}{1980}+\frac{1}{1970}-\frac{1}{5}-\frac{1}{15}-\frac{1}{25}\right)=0\)
\(\Leftrightarrow\)\(x-1995=0\)
\(\Leftrightarrow\)\(x=1995\)