Phân tích thành nhân tử: x4+2016x2+2015x+2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: 2016x^2
x^4+2016x^2+2015x+2016
=x^4+x^3+x^2-x^3-x^2-x+2016x^2+2016x+2016
=(x^2+x+1)(x^2-x+2016)
2015x4 + 2016x2 + x + 2016
= (2015x4 + 2015x3 + 2015x2) + (- 2015x3 - 2015x2 - 2015x) + (2016x2 + 2016x + 2016)
= (x2 + x + 1)(2015x2 - 2015x + 2016)
Ta có: x^4 + 2016x^2 + 2015x + 2016
= x^4 + x^3 + x^2 - x^3 - x^2 - x + 2016x^2 + 2016x + 2016
= x^2(x^2 + x + 1) - x(x^2 + x + 1) + 2016(x^2 + x + 1)
= (x^2 + x + 1)(x^2 - x + 2016)
\(x^4+2016x^2+2015x+2016\)
\(=x^4-x+2016x^2+2016x+2016\)
\(=x\left(x^3-1\right)+2016\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2016\right)\)
x4+2015x2+2014x+2015
=x4-x+2015x2+2015x+2015
=x.(x3-1)+2015.(x2+x+1)
=x.(x-1)(x2+x+1)+2015.(x2+x+1)
=(x2+x+1)(x2-x+2015)
\(x^4+2015x^2+2014x+2015=\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(2015x^2+2015x+2015\right)\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2015\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2-x+2015\right)\)
\(x^4+2015x^2+2014x+2015\)
\(=\left(x^4-x\right)+2015x^2+2015x+2015\)
\(=x\left(x^3-1\right)+2015\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2015\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2015\right)\)
x4+4 = (x2)2+22 = x4 + 2.x2.2 + 4 – 4x2
= (x2 + 2)2 – (2x)2 = (x2-2x+2)(x2+2x+2)
Ta có: \(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
bạn có: x^4 + 2016x^2 + 2015x + 2016
= x^4 + x^3 + x^2 - x^3 - x^2 - x + 2016x^2 + 2016x + 2016
= x^2(x^2 + x + 1) - x(x^2 + x + 1) + 2016(x^2 + x + 1)
= (x^2 + x + 1)(x^2 - x + 2016)
\(x^4+2016x^2+2015x+2016\)
=\(x^4+x^3+x^2+2015x^2+2015x+2015+1-x^3\)
=\(x^2\left(x^2+x+1\right)+2015\left(x^2+x+1\right)+\left(1-x\right)\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^2+2015+1-x\right)\)
=\(\left(x^2+x+1\right)\left(x^2-x+2016\right)\)