K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
6 tháng 9 2021

ta có độ dài \(\hept{\begin{cases}AB=2\sqrt{2}\\BC=4\sqrt{2}\\CA=6\sqrt{2}\end{cases}\Rightarrow AB+BC=CA}\) vậy nên 3 diểm này thẳng hàng

7 tháng 3 2017

Xét A có: x=1 ; y=-1

=> a=y/x = -1/1 =-1

Xét B có: x=2 ; y=1

=> a=y/x=1/2=0.5

Xét c có : x=4 ; y=5

=> a=y/x=5/4=1.25

Vì a khác nhau nên A;B;C không thẳng hàng

11 tháng 4 2017

Bạn tìm đường thẳng đi qua 2 điểm A và B là \(\frac{x-x_a}{x_b-x_a}=\frac{y-y_a}{y_b-y_a}\)rồi thay tọa độ điểm C vào thấy k thỏa mãn phương trình đường thẳng thì => 3 điểm này k thẳng hàng

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Gọi \(C\left( {a;b} \right),D\left( {m,n} \right) \Rightarrow \overrightarrow {IC}  = \left( {a - 4,b - 2} \right)\) và \(\overrightarrow {ID}  = \left( {m - 4,n - 2} \right)\)

Do I là tâm của hình bình hành ABCD nên I là trung điểm AC và BD.

Vậy ta có:\(\overrightarrow {AI}  = \overrightarrow {IC} \)và \(\overrightarrow {BI}  = \overrightarrow {ID} \)

Ta có: \(\overrightarrow {AI}  = \left( {7;1} \right)\) và \(\overrightarrow {BI}  = \left( {5; - 1} \right)\)

Do \(\overrightarrow {AI}  = \overrightarrow {IC}  \Leftrightarrow \left\{ \begin{array}{l}7 = a - 4\\1 = b - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 11\\b = 3\end{array} \right.\) .Vậy \(C\left( {11;3} \right)\)

Do \(\overrightarrow {BI}  = \overrightarrow {ID}  \Leftrightarrow \left\{ \begin{array}{l}5 = m - 4\\ - 1 = n - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 9\\n = 1\end{array} \right.\). Vậy \(D\left( {9;1} \right)\)

10 tháng 11 2015

Gọi pt đường thẳng AB có dạng y =ax + b 

Tọa độ các điểm A ; B thỏa mãn pt y = ax + b nên ta có hpt :

3 = 2a + b 

-3 = -a + b 

..... 

23 tháng 7 2020

Muốn biết ba điểm có thẳng hàng hay không, ta xét chúng cùng thuộc một đồ thị hàm số hay không

Xét A(-3 ; 5)

=> xA = -3 ; yA = 5

=> 5 = a.(-3)

=> a = -5/3

=> A(-3 ; 5) thuộc đồ thị hàm số \(y=-\frac{5}{3}x\)( 1 )

Xét B( 2 ; -3 )

=> xB = 2 ; yB = -3

=> -3 = a.2

=> a = -3/2

=> B thuộc đồ thị hàm số \(y=-\frac{3}{2}x\)( 2 )

Xét C( 0, 6 ; -1 )

=> xC = 0, 6 ; yC = -1

=> -1 = a . 0, 6

=> a = \(\frac{-1}{0,6}=\frac{-1}{\frac{3}{5}}=-\frac{5}{3}\)

=> C( 0, 6 ; -1 ) thuộc đồ thị hàm số \(y=-\frac{5}{3}x\)( 3 )

Từ ( 1 ) , ( 2 ) và ( 3 ) 

=> Ba điểm A, B, C không thẳng hàng ( vì ba điểm không cùng thuộc một đồ thị hàm số )

23 tháng 7 2020

CTV nói thì cái j chả đúng

NV
14 tháng 11 2021

a. \(\overrightarrow{AB}=\left(2;0\right)\) ; \(\overrightarrow{BC}=\left(-3;3\right)\) ; \(\overrightarrow{CA}=\left(1;-3\right)\)

b. Do \(\dfrac{2}{-3}\ne\dfrac{0}{3}\Rightarrow\) hai vecto \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\) không cùng phương

\(\Rightarrow\) 3 điểm A;B;C không thẳng hàng

c.

\(\left\{{}\begin{matrix}x_M=\dfrac{x_B+x_C}{2}=\dfrac{5}{2}\\y_M=\dfrac{y_B+y_C}{2}=\dfrac{3}{2}\end{matrix}\right.\)  \(\Rightarrow M\left(\dfrac{5}{2};\dfrac{3}{2}\right)\)

\(\left\{{}\begin{matrix}x_N=\dfrac{x_C+x_A}{2}=\dfrac{3}{2}\\y_N=\dfrac{y_C+y_A}{2}=\dfrac{3}{2}\end{matrix}\right.\) \(\Rightarrow N\left(\dfrac{3}{2};\dfrac{3}{2}\right)\)

\(\left\{{}\begin{matrix}x_P=\dfrac{x_A+x_B}{2}=3\\y_P=\dfrac{y_A+y_B}{2}=0\end{matrix}\right.\) \(\Rightarrow P\left(3;0\right)\)

E trên trục hoành nên E(x;0)

A(6;3); B(-3;6); E(x;0)

\(\overrightarrow{AB}=\left(-9;3\right);\overrightarrow{AE}=\left(x-6;-3\right)\)

Để A,B,E thẳng hàng thì \(\dfrac{x-6}{-9}=\dfrac{-3}{3}=-1\)

=>x-6=9

=>x=15

Vậy: E(15;0)

NV
4 tháng 1

Do E thuộc trục hoành nên tọa độ có dạng \(E\left(x;0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-9;3\right)\\\overrightarrow{AE}=\left(x-6;-3\right)\end{matrix}\right.\)

3 điểm A, B, E thẳng hàng khi:

\(\dfrac{x-6}{-9}=\dfrac{-3}{3}\Rightarrow x-6=9\)

\(\Rightarrow x=15\Rightarrow E\left(15;0\right)\)