K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

A B C E M D I

a) Xét tam giác AED và tam giác MDE , có :

ED : chung

góc AED = góc MDE ( AB // DM )

góc ADE = góc MED ( EM // AC )

=> tam giác AED = tam giác MDE ( g-c-g )

=> AD = ME ( hai cạnh tương ứng )

Vậy AD = ME

b) Vì góc AIE + góc AID = 180 độ ( hai góc kề bù ) mà góc AID + góc DIM = 180 độ => ba điểm A , I , M thẳng hảng

Vây ba điểm A , I , M thẳng hảng

Bài làm 

a) xét tam giác AED và tam giác MDE có:

^ADE = ^DEM ( do AD // EM )

ED chung

^EDM = ^AED ( do AE // DM )

=> Tam giác AED = tam giác MDE ( g.c.g )

=> AD = ME

b) Gọi O là giao điểm của ED và AM

Nối AM

Xét tam giác AEM và tam giác MDA có:

^EAM = ^AMD ( so le trong vì EA // DM )

AM chung

^EMA = ^DAM ( so le trong vì EM // AD )

=> Tam giác AEM = tam giác MDA ( g.c.g )

=> AE = DM ( hai cạnh tương ứng )

Xét tam giác AEO và tam giác MDO có:

^AED = ^EDM ( so le trong vì AE // DM )

AE = DM ( chúng minh trên )

^EAM = ^AMD ( so le trong vì AE // DM )

=> Tam giác AEO = tam giác MDO ( g.c.g )

=> EO = OD

=> O là trung điểm ED.      (1)

Mà OA = OM ( do tam giác AOE = tam giác DOM )

=> O là trung điểm của AM.     (2)

Từ (1), (2) => O là trung điểm của ED và AM và là giao điểm của OE và AM

Mà I là trung điểm ED ( giả thiết )

=> Điểm O và I trùng nhau.

=> I là trung điểm của ED và AM, là giao điểm của AM và ED

=> 3 điểm A, I, M thẳng hàng

1 tháng 9 2019

1 tháng 1 2020

Ta có: MD // AC nên ΔDBM ~ ΔABC. Suy ra

D B A B = B M B C = D M A C = D B + B M + D M A B + B C + C A

Do đó 1 3 = P B D M P A B C (1)

Ta có ME // AB nên ΔEMC ~ ΔABC. Suy ra

E M A B = M C B C = E C A C = E M + M C + E C A B + B C + A C

do đó 2 3 = P E M C P A B C (2)

Từ (1) và (2) suy ra:

P B D M P A B C : P E M C P A B C = 1 3 : 2 3 ⇔ P B D M P E M C = 1 2

Đáp án: A

a: Xét ΔABC và ΔCDA có

\(\widehat{ACB}=\widehat{CAD}\)

AC chung

\(\widehat{CAB}=\widehat{ACD}\)

Do đó: ΔABC=ΔCDA

b: Xét tứ giác ABCD có 

AB//CD

AD//BC

Do đó: ABCD là hình bình hành

Suy ra: Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường

hay M là trung điểm của AC

c: Xét ΔAMI và ΔCMK có 

\(\widehat{IAM}=\widehat{KCM}\)

AM=CM

\(\widehat{AMI}=\widehat{CMK}\)

Do đó: ΔAMI=ΔCMK

Suy ra: MI=MK

mà M,I,K thẳng hàng

nên M là trung điểm của IK

18 tháng 2 2019

Ta có: MD // AC nên ΔDBM ~ ΔABC. Suy ra :

D B A B = B M B C = D M A C = D B + B M + D M A B + B C + C A

Do đó  1 3 = P B D M P A B C

Chu vi ΔDBM bằng 30. 1 3  = 10cm

Ta có ME // AB nên ΔEMC ~ ΔABC. Suy ra

E M A B = M C B C = E C A C = E M + M C + E C A B + B C + A C

do đó  2 3 = P E M C P A B C

Chu vi ΔEMC bằng 30. 2 3 = 20 cm

Vậy chu vi ΔDBM và chu vi ΔEMC lần lượt là 10cm; 20cm

Đáp án: D