Tìm các cặp số nguyên (x;y) thỏa mãn :x^2+xy-2016x-2017y-2018=0
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NP
1
6 tháng 2 2022
\(2xy+y=13-2x\)
\(\Rightarrow2xy+y+2x=13\)
\(\Rightarrow2x\left(y+1\right)+\left(y+1\right)=14\)
\(\Rightarrow\left(y+1\right)\left(2x+1\right)=14\)
Vì \(x,y\in Z\Rightarrow\left(y+1\right)\left(2x+1\right)\in Z\Rightarrow\left(y+1\right)\left(2x+1\right)\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
Xét các trường hợp, lập bảng, kết luận.
Đến đây bạn tự làm nhé.
DF
1
TP
1
12 tháng 12 2019
dạnh toán này quá cao siêu quá,ko phù hợp vs em...hs lớp 6
BH
0
NK
0
HT
0
NT
1
K
3
20 tháng 2 2020
Vì y là số nguyên, 2y-3 lẻ
=> 2y-3 thuộc tập (1; 5; -1; -5)
kẻ bảng => (x;y)=(7;2), (-1; 4), (-13;1), (-5;-1)
20 tháng 2 2020
(x+30)x(2y-3)=10
x+30=10;2y-3=10
x=-20;2yx13
x=20;y=6/2
Ta có : \(x^2+xy-2016x-2017y-2018=0\)
\(\Leftrightarrow x^2+xy+x-1-2017x-2017y-2017=0\)
\(\Leftrightarrow x\left(x+y+1\right)-2017\left(x+y+1\right)=1\)
\(\Leftrightarrow\left(x-2017\right)\left(x+y+1\right)=1\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2017=1\\x+y+1=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-2017=-1\\x+y+1=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2018\\y=-2018\end{matrix}\right.\\\left\{{}\begin{matrix}x=2016\\y=-2018\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x,y\right)\in\left\{\left(2018,-2018\right),\left(2016,-2018\right)\right\}\)