Tam giác ABC có góc A=90 độ, AH vuông goác với BC, AB=4,CH=6...Tính AC2, TRUNG TUYẾN AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- có = 900, AM là trung tuyến MB = MC = 41
- Tính được: HM = 9 (cm), HB = 32 (cm); HC = 50 (cm)
- Xét vuông tại H AB2 = BH2 + AH2 = 322 + 402 = 2624
- Xét vuông tại H AC2 = AH2 + HC2 = 402 + 502 = 4100
- Suy ra: =
a: XétΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
Suy ra: BH=CH
b: BH=CH=BC/2=18(cm)
nên AH=24(cm)
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
=>ΔABM=ΔACM
b: ΔABM=ΔACM
=>góc AMB=góc AMC=1/2*180=90 độ
BM=CM=30/2=15cm
AM=căn 17^2-15^2=8cm
c: góc BAC=180-2*30=120 độ
=>góc IMK=60 độ
Xét ΔAIM vuông tại I và ΔAKM vuông tại K có
AM chung
góc IAM=góc KAM
=>ΔAIM=ΔAKM
=>MI=MK
mà góc IMK=60 độ
nên ΔIMK đều
a: Ta có: AB<AC
nên HB<HC
hay \(\left\{{}\begin{matrix}HB< 12.5\left(cm\right)\\HC>12.5\left(cm\right)\end{matrix}\right.\)
Ta có: HB+HC=BC
nên HB=25-HC
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC\left(25-HC\right)=12^2=144\)
\(\Leftrightarrow HC^2-25HC+144=0\)
\(\Leftrightarrow HC=16\left(cm\right)\)
\(\Leftrightarrow HB=9\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\end{matrix}\right.\)
B1: Gọi Tam giác ABC vuông tại A có AH là đ/cao chia cạnh huyền thành 2 đoạn HB và HC
AH2=HB x HC =3x4=12
AH=căn 12 r tính mấy cạnh kia đi
B2: Ta có AB/3=AC/4 suy ra AB = 3AC/4
Thế vào cong thức Pytago Tam giác ABC tính máy cái kia
a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm
b, 1. Chứng minh tương tự câu a)
2. Sử dụng định lí Pytago cho tam giác vuông AHM
a: ΔABC vuông tại A có AM là trung tuyến
nên MA=MC=MB
=>góc MAC=góc MCA=góc BAH
b: góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
góc EAM+góc AED
=góc AHD+góc MCA
=góc ABC+góc MCA=90 độ
=>AM vuông góc ED
Đặt BH = x
=> BC = x + 4
Tam giác ABH vuông tại H , theo HTL :
AB^2 = BH.BC
<=> 4^2 = x(x+4)
<=> x^2 + 4x - 16 = 0
<=> x^2 + 4x + 4 - 20 = 0
<=> ( \(\left(x+2+2\sqrt{5}\right)\left(x+2-2\sqrt{5}\right)\) = 0
=> \(x=2\sqrt{5}-2\) ( vì x >0 )
AC^2 = HC.BC = 4.\(\left(2\sqrt{5}-2+4\right)=4.\left(2\sqrt{5}+2\right)=8\sqrt{5}+8\)
AM = 1/2BC = \(\frac{1}{2}\left(2\sqrt{5}-2+4\right)=\frac{1}{2}\left(2\sqrt{5}+2\right)=\sqrt{5}+1\)