K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2=\left(a^4-2a^2b^2+b^4\right)+2\left(a^2-b^2\right)c^2+c^4-4a^2c^2=\left(a^2-b^2+c^2\right)^2-\left(2ac\right)^2=\left(a^2-b^2+c^2-2ac\right)\left(a^2-b^2+c^2+2ac\right)\)

\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2\)

\(=\left(a^4-2a^2b^2+b^4\right)+2\left(a^2-b^2\right)c^2+c^4-4a^2c^2\)

\(=\left(a^2-b^2+c^2\right)^2-\left(2ac\right)^2\)

\(=\left(a^2-2ac+c^2-b^2\right)\left(a^2+2ac+c^2-b^2\right)\)

\(=\left(a-c-b\right)\left(a-c+b\right)\left(a+c-b\right)\left(a+c+b\right)\)

4 tháng 9 2021

=(c-b-a)(c-b+a)(c+b-a)(c+b+a)

tuấn IQ 1

3 tháng 7 2018

Đặt \(A=2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4\)

\(A=-\left(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2-2\left(ca\right)^2\right)\)

\(A=-\left(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ca\right)^2-4\left(ca\right)^2\right)\)

Áp dụng hàng đẳng thức \(\left(a^2-b^2+c^2\right)=a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ca\right)^2\):

\(A=-\left[\left(a^2-b^2+c^2\right)^2-4\left(ca\right)^2\right]\)

\(A=-\left(a^2-b^2+c^2-2ca\right)\left(a^2-b^2+c^2+2ca\right)\)

28 tháng 1 2021

2222222222222a+257222222222222222222222222222222222222222222222222222222222222222222222222222222222222222a=?

1: =(a+b)^3+c^3-3ab(a+b)-3acb

=(a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)

=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2-3ab)

=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)

 

NV
13 tháng 1 2021

\(VT=\left(a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2\right)-4b^2c^2\)

\(=\left(a^2-b^2-c^2\right)^2-\left(2bc\right)^2\)

\(=\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)\)

\(=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\)

\(=\left(a-b-c\right)\left(a+b+c\right)\left(a+c-b\right)\left(a+b-c\right)\)

Do a;b;c là độ dài 3 cạnh của tam giác, ta có:

\(\left\{{}\begin{matrix}a-b-c< 0\\a+b+c>0\\a+c-b>0\\a+b-c>0\end{matrix}\right.\) \(\Rightarrow VT< 0\) (đpcm)

14 tháng 1 2021

Mình dùng định lí cos vào có được ko ạ

NV
5 tháng 7 2021

Đề bài sai, phản ví dụ: \(a=3;b=1;c=1\)  thì \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=45>0\)

https://olm.vn/hoi-dap/detail/108617134952.html

Bạn xem ở đây phần phân tích đa thức thành nhân tử nhé, sau đây là phần tiếp theo

 

14 tháng 11 2021

\(=4a^4+4a^2b^2+b^4-4a^2b^2\\ =\left(2a^2+b^2\right)^2-\left(2ab\right)^2\\ =\left(2a^2+b^2+2ab\right)\left(2a^2+b^2-2ab\right)\)

14 tháng 11 2021

\(4a^4+b^4\)

\(=\left(2a^2\right)^2+\left(b^2\right)^2\)

\(=\left[\left(2a^2\right)^2+4a^2b^2+\left(b^2\right)^2\right]-4a^2b^2\)

\(=\left[2a^2+b^2\right]^2-\left(2ab\right)^2\)

\(=\left(2a^2+b^2+2ab\right)\left(2a^2+b^2-2ab\right)\)

1 tháng 8 2021

\(9a^2b^2-b^4+6b^3-9b^2\\ =b^2\left(9a^2-b^2+6b-9\right)\\ =b^2\left[9a^2-\left(b-3\right)^2\right]\\ =b^2\left(3a-b+3\right)\left(3a+b-3\right)\)

23 tháng 12 2020

\(a^6+a^4+a^2b^2+b^4-b^6\\ =a^6-b^6+a^4+a^2b^2+b^4\\ =\left(a^6-b^6\right)+\left(a^4+a^2b^2+b^4\right)\\ =\left[\left(a^2\right)^3-\left(b^2\right)^3\right]+\left(a^4+a^2b^2+b^4\right)\\ =\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)+\left(a^2+a^2b^2+b^4\right)\\ =\left(a^2-b^2+1\right)\left(a^4+a^2b^2+b^4\right)\\ =\left(a^2-b^2+1\right)\left(a^4+2a^2b^2+b^4-a^2b^2\right)\\ =\left(a^2-b^2+1\right)\left[\left(a^2+b^2\right)^2-\left(ab\right)^2\right]\\ =\left(a^2-b^2+1\right)\left(a^2+b^2-ab\right)\left(a^2+b^2+ab\right)\)

a6, a4 là số mũ hay hệ số vậy bn