K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

TK à bn??

4 tháng 10 2021

a) a . b là số nguyên dương nên a và b cùng dấu.

Mà a là số nguyên âm nên b cũng là số nguyên âm.

b) a . b là số nguyên âm nên a và b trái dấu.

Mà a là số nguyên âm nên b là số nguyên dương.

DD
10 tháng 5 2021

\(\overline{aa...abb...b}=\left(\overline{cc...c}\right)^2\)

\(\Leftrightarrow a.11...1.10^n+b.11...1=c^2.11...1^2\)

\(\Leftrightarrow a.10^n+b=c^2.11...1\)

\(\Leftrightarrow a.\left(9k+1\right)+b=c^2.k\)(với \(k=11...1\)(\(n\)chữ số \(1\))) 

\(\Leftrightarrow\left(c^2-9a\right)k=a+b\)

Với \(k=1\)ta có: \(c^2=10a+b\)ta có các bộ số: 

\(\left(1,6,4\right),\left(2,5,5\right),\left(3,6,6\right),\left(4,9,7\right),\left(6,4,8\right),\left(8,1,9\right)\)

Với \(k=11\)ta có \(11\left(c^2-9a\right)=a+b\)nên \(\hept{\begin{cases}a+b=11\\c^2-9a=1\end{cases}}\)ta có nghiệm duy nhất \(\left(7,4,8\right)\).

Với \(n>2\)ta thấy hiển nhiên không thỏa mãn do \(a+b< 19\)

DD
10 tháng 5 2021

Ở đây mình làm trường hợp là nó đúng chỉ với 1 giá trị của \(n\). Do đó ta xét với \(n=1,n=2,...\), tức là \(k=1,k=11,...\). Còn nếu đề là đúng với mọi số nguyên dương \(n\)thì sẽ làm khác một chút, và ra đáp án là không tồn tại giá trị nào cả. 

5 tháng 12 2021

Ta có: \(A=\left(a+b\right)\left(a^2-ab+b^2\right)+\dfrac{6}{a^2+b^2}+3ab\)

               \(=2\left(a^2+b^2\right)+\dfrac{6}{a^2+b^2}+ab\)

               \(=\left[\dfrac{3}{2}\left(a^2+b^2\right)+\dfrac{6}{a^2+b^2}\right]+\dfrac{a^2+b^2}{2}+ab\)

               \(\ge2\sqrt{\dfrac{3}{2}\left(a^2+b^2\right).\dfrac{6}{a^2+b^2}}+\dfrac{\left(a+b\right)^2}{2}=2.3+\dfrac{2^2}{2}=8\)

Dấu "=" xảy ra ⇔ a=b=1

DD
13 tháng 7 2021

Ta có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}\)

\(>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)

\(=\frac{a+b+c+d}{a+b+c+d}=1\)

Tương tự ta cũng chứng minh được \(\frac{b}{a+b}+\frac{c}{b+c}+\frac{d}{c+d}+\frac{a}{d+a}>1\)

mà \(\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}\right)+\left(\frac{b}{a+b}+\frac{c}{b+c}+\frac{d}{c+d}+\frac{a}{d+a}\right)\)

\(=\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+d}{c+d}+\frac{d+a}{d+a}=4\)

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}\)là số nguyên 

do đó \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\)

\(\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)=0\)(vì \(a\ne c\))

\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)

\(\Leftrightarrow ac=bd\)(vì \(b\ne d\))

Khi đó \(abcd=ac.ac=\left(ac\right)^2\)là số chính phương. 

27 tháng 1 2016

Ta có: A=\(\frac{\frac{\left(2m+2\right)\left[\frac{2m-2}{2}+1\right]}{2}}{m}=\frac{\frac{2\left(m+1\right)m}{2}}{m}=\frac{\left(m+1\right)m}{m}\)=m+1

B=\(\frac{\frac{\left(2n+2\right)\left[\frac{2n-2}{2}+1\right]}{2}}{n}=\frac{\frac{2\left(n+1\right)n}{2}}{n}=\frac{\left(n+1\right)n}{n}\)=n+1

Mà A<B

=>m+1<n+1

=>m<n

27 tháng 1 2016

bam vao day nhe ban ! http://olm.vn/hoi-dap/question/373179.html

17 tháng 1 2016

Ta có: A=\(\frac{\frac{\left(2m+2\right)\left[\frac{\left(2m-2\right)}{2}+1\right]}{2}}{m}\)=\(\frac{\frac{2\left(m+1\right)m}{2}}{m}=\frac{\left(m+1\right)m}{m}=m+1\)

B=\(\frac{\frac{\left(2n+2\right)\left[\frac{\left(2n-2\right)}{2}+1\right]}{2}}{m}=\frac{\frac{2\left(n+1\right)n}{2}}{n}=\frac{\left(n+1\right)n}{n}=n+1\)

Mà A>B

=>m+1>n+1

=>m>n

20 tháng 1 2016

mik ko hiểu