K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

- Cho a là số chẵn , b là số chẵn thì ab( a+b) \(⋮\) 2

- Cho a là số chẵn, b là số lẻ thì ab(a+b) \(⋮\) 2

- Cho a là số lẻ. b là số chẳn thì ab(a+b) \(⋮\) 2

- Cho a là số lẻ. b là số lẻ thi ab(a+b) \(⋮\) 2

Vậy: a, b\(\in\) N \(⋮\) 2

25 tháng 12 2017

https://olm.vn/hoi-dap/question/312307.html vào link này bạn nhé

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

Lời giải:
Nếu trong 2 số $a,b$ có ít nhất 1 số chẵn thì $ab\vdots 2$

$\Rightarrow ab(a+b)\vdots 2$.

Nếu $a,b$ đều lẻ thì $a+b$ chẵn.

$\Rightarrow ab(a+b)\vdots 2$

Từ 2 TH trên suy ra $ab(a+b)\vdots 2$ với $a,b$ là số tự nhiên.

13 tháng 5 2019

Ta có: ab− ba = (10a + b) - (10b + a) = 9a - 9b = 9(a - b) chia hết cho 9 (điều phải chứng minh).

23 tháng 11 2020

a,xét n chẵn hiển nhiên A ko chia hết cho 2

n lẻ thì n^2 lẻ n lẻ

->A lẻ -> A ko chia hết cho 2

b,n^2 có tận cùng là:0,1,4,5,6,9

->n^2+n có tận cùng:0,2,8

->n^2+n+1 có tận cùng:1,3,9  ko chia hết cho 5

11 tháng 10 2016

chan qua a!

ai kb voi mk ko

chan qua !

chuc bn hoc gioi!

nhae

25 tháng 7 2018

\(1;a,942^{60}-351^{37}\)

\(=\left(942^4\right)^{15}-\left(....1\right)\)

\(=\left(....6\right)^{15}-\left(...1\right)\)

\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)

\(b,99^5-98^4+97^3-96^2\)

\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)

\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)

\(2;5n-n=4n⋮4\)

25 tháng 7 2018

chả hiểu j

19 tháng 12 2023

Số số hạng của A:

60 - 1 + 1 = 60 (số)

Do 60 ⋮ 3 nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:

A = (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)

= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁵⁸.(1 + 2 + 2²)

= 1.7 + 2⁴.7 + ... + 2⁵⁸.7

= 7.(1 + 2⁴ + ... + 2⁵⁸) ⋮ 7

Vậy A ⋮ 7

11 tháng 8 2023

a) \(A=3+3^2+..+3^{60}\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)

\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{59}\cdot\left(1+3\right)\)

\(A=4\cdot\left(3+3^3+...+3^{59}\right)\)

Vậy A chia hết cho 4

b) \(A=3+3^2+3^3+...+3^{60}\)

\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)

\(A=3\cdot\left(1+3+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)

\(A=13\cdot\left(3+..+3^{58}\right)\)

Vậy A chia hết cho 13

9 tháng 11 2017

Nếu : a+2b chia hết cho 3

=>5.(a+2b) chia hết cho 3

=>5a+10b chia hết cho 3

Mà : 3a và 9 b đều chia hết cho 3

=> 5a+10b-3a-9b chia hết cho 3 hay 2a+b chia hết cho 3 (1)

Nếu : 2a+b chia hết cho 3

Có 3a + 9b đều chia hết cho 3 => 2a+b+3a+9b chia hết cho 3 hay 5a+10b chia hết cho 3

=>5.(a+2b) chia hết cho 3

=> a+2b chia hết cho 3 ( vì 5 và 3 là 2 số nguyên tố cùng nhau ) (2)

Từ (1) và (2) => ĐPCM

15 tháng 6 2017

Ta có: n2 + n + 1 = n(n + 1) + 1

Ta có n(n + 1) ⋮ 2 vì n(n + 1) là tích của hai số tự nhiên liên tiếp.

Mà 1 không chia hết cho 2

Do đó n(n + 1) + 1 không chia hết cho 2.