Phân tích đa thức thành nhân tử : (x – 2)(x – 1)x(x + 1) – 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=x^2\left(x^2+2x+1\right)+x+1\)
\(=x^2\left(x+1\right)^2+x+1\)
\(=\left(x+1\right)\left[x^2\left(x+1\right)+1\right]\)
\(=\left(x+1\right)\left(x^3+x^2+1\right)\)
\(x^4+2x^3+x^2+x+1\)
\(=x^2\left(x+1\right)^2+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+x^2+1\right)\)
\(\left(x-5\right)\left(x-1\right)\left(x+3\right)\left(x+7\right)+60\)
\(=\left(x^2+2x-35\right)\left(x^2+2x-3\right)+60\)
\(=\left(x^2+2x\right)^2-38\left(x^2+2x\right)+105+60\)
\(=\left(x^2+2x\right)^2-3\left(x^2+2x\right)-35\left(x^2+2x\right)+165\)
\(=\left(x^2+2x-3\right)\left(x^2+2x-35\right)\)
\(=\left(x+3\right)\left(x-1\right)\left(x+7\right)\left(x-5\right)\)
\(x^4-x^3-x+1=\left(x^4-x^3\right)-\left(x-1\right)=x^3\left(x-1\right)-\left(x-1\right)=\left(x^3-1\right)\left(x-1\right)=\left(x-1\right)^2.\left(x^2+x+1\right)\)
x4 - x3 - x + 1
= (x4 - x3) - (x - 1)
= x3(x - 1) - (x - 1)
= (x3 - 1)(x - 1)
\(\left(xy+1\right)^2-\left(x+y\right)^2=\left(xy+1-x-y\right)\left(xy+1+x+y\right)=\left[x\left(y-1\right)-\left(y-1\right)\right]\left[x\left(y+1\right)+\left(y+1\right)\right]=\left(x-1\right)\left(y-1\right)\left(x+1\right)\left(y+1\right)\)
\(\left(xy+1\right)^2-\left(x+y\right)^2\)
\(=\left(xy-x-y+1\right)\left(xy+1+x+y\right)\)
\(=\left(y-1\right)\left(x-1\right)\left(y+1\right)\left(x+1\right)\)
\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\\ =\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\\ =\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\\ =\left(x-1\right)\left(x+1\right)\left(x+4-1\right)\left(x+4+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+5\right)\)
(x+3)(x+4)(x+5)(x+6)-24=[(x+3)(x+6)][(x+4)(x+5)]-24
=(x2+6x+3x+3.6)(x2+5x+4x+5.4)-24
=(x2+9x+18)(x2+9x+20)-24
=(x2+9x+18)(x2+9x+18+2)-24 (*)
đặt x2+9x+18 là t (1)
(*) trở thành
t(t+2)-24=t2+2t-24=t2-4t+6t-24
=(t2-4t)+(6t-24)
=t(t-4)+6(t-4)
=(t-4)(t+6) (2)
thay (2) vào (1), ta được:
(x+3)(x+4)(x+5)(x+6)-24=(x2+9x+18-4)(x2+9x+18+6)
=(x2+9x+14)(x2+9x+24)
=(x2+7x+2x+14)(x2+9x+24)
=[(x2+7x)+(2x+14)](x2+9x+24)
=x(x+7)+2(x+7)(x2+9x+24)
=(x+7)(x+2)(x2+9x+24)
(mình đã cố gắng giải thật chi tiết và phân tích triệt để nhất có thể rồi. có j sai sót thì góp ý nha!)
x^5+x^4+1
=x5+x4+x3+x2+x+1-x3-x2-x
=x3.(x2+x+1)+(x2+x+1)-x.(x2+x+1)
tự xử tiếp
Ta có: \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
\(=\left(12x^2+8x+3x+2\right)\left(12x^2+12x-x-1\right)-4\)
\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
\(=\left(12x^2+11x\right)^2+\left(12x^2+11x\right)-6\)
\(=\left(12x^2+11x+3\right)\left(12x^2+11x-2\right)\)
\(\left(x-2\right)\left(x-1\right)x\left(x+1\right)-24\)
\(=\left(x^2-x-2\right)\left(x^2-x\right)-24\)
\(=\left(x^2-x\right)-2\left(x^2-x\right)-24\)
\(=\left(x^2-x-6\right)\left(x^2-x+4\right)\)
\(=\left(x-3\right)\left(x+2\right)\left(x^2-x+4\right)\)
đây là cách mình chế ra bạn ko hiểu chỗ nào hỏi mk nhé