Hàm số y=x3-6x2+mx+1 đồng biến trên miền (0; +vô cực) khi giá trị của m là:
A. m nhỏ hơn hoặc bằng 0
B. m lớn hơn hoặc bằng 0
C. m nhỏ hơn hoặc bằng 12
D. m lớn hơn hoặc bằng 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Ta có y ' = 3 x 2 − 12 x + m
Hàm số đồng biến trên y = f ' x
Ta có f ' x = − 6 x + 12 ⇒ f ' x = 0 ⇔ x = 2 . Ta có bảng biến thiên hàm số f(x) như trên
Từ bảng biến thiên, suy ra f x 0 ; + ∞ ≤ 12 ⇒ m ≥ f x 0 ; + ∞ ⇔ m ≥ 12
Chọn C.
. Hàm số đồng biến trên (0;+ ∞ ))
Lập bảng biến thiên của g(x) trên (0;+ ∞ )
Dựa vào bảng biến thiên, kết luận
Lập bảng biến thiên của g(x) trên
Chọn D.
Cách 1: Tập xác định: D = R. Ta có
+) Trường hợp 1:
+) Trường hợp 2: Hàm số đồng biến trên (0; +∞) ⇔ y' = 0 có hai nghiệm x1; x2 thỏa mãn x1 < x2 ≤ 0(*)
-) Trường hợp 2.1: y’ = 0 có nghiệm x = 0 suy ra m = 0.
Nghiệm còn lại của y’ = 0 là x = 4 (không thỏa (*))
-) Trường hợp 2.2: y’ = 0 có hai nghiệm x1; x2 thỏa mãn:
Kết hợp 2 trường hợp, vậy m ≥ 12
Chọn C.
Ta có: y = - x 3 + 6 x 2 + 2
BBT:
Dựa vào BBT ta thấy hàm số đồng biến trên khoảng (0;4).
Chọn B