K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2017

Không mặn mà với số này cho lắm

\(A=\dfrac{5}{2}x+\dfrac{2}{5x}+\dfrac{7}{2}y+\dfrac{8}{7y}+\dfrac{1}{2}\left(x+y\right)\)

\(A\ge2\sqrt{\dfrac{5}{2}x.\dfrac{2}{5x}}+2\sqrt{\dfrac{7}{2}y.\dfrac{8}{7y}}+\dfrac{1}{2}.\dfrac{34}{35}\)

\(A\ge2+4+\dfrac{17}{35}=\dfrac{227}{35}\)

GTNN là \(\dfrac{227}{35}\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=\dfrac{4}{7}\end{matrix}\right.\)

k ko biết

2 tháng 11 2017

treen toán ko dc đưa những hình ảnh này. OK

19 tháng 8 2019

Dự đoán x = 2/5; y =4/7, giúp ta có được lời giải:D

\(A=\frac{5x}{2}+\frac{2}{5x}+\frac{7y}{2}+\frac{8}{7y}+\frac{1}{2}\left(x+y\right)\)

Đến đây đánh giá cô si + kết hợp giả thiết là xong:D

NV
23 tháng 8 2021

Ta chứng minh BĐT sau:

Ta có: \(x\left(3-4x^2\right)=-4x^3+3x-1+1=1-\left(x+1\right)\left(2x-1\right)^2\le1\)

\(\Rightarrow\dfrac{4x^2}{x\left(3-4x^2\right)}\ge\dfrac{4x^2}{1}=4x^2\)

Tương tự và cộng lại:

\(Q\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+zx\right)=3\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{2}\)

NV
21 tháng 10 2019

a/ ĐKXĐ: ....

\(\Leftrightarrow x^2-8x+16+x+14-6\sqrt{x+5}=0\)

\(\Leftrightarrow\left(x-4\right)^2+\frac{\left(x+14\right)^2-36\left(x+5\right)}{x+14+6\sqrt{x+5}}=0\)

\(\Leftrightarrow\left(x-4\right)^2+\frac{x^2-8x+16}{x+14+6\sqrt{x+5}}=0\)

\(\Leftrightarrow\left(x-4\right)^2\left(1+\frac{1}{x+14+6\sqrt{x+5}}\right)=0\)

2/

\(A=\frac{5x}{2}+\frac{2}{5x}+\frac{7y}{2}+\frac{8}{7y}+\frac{1}{2}\left(x+y\right)\)

\(A\ge2\sqrt{\frac{10x}{10x}}+2\sqrt{\frac{56y}{14y}}+\frac{1}{2}.\frac{34}{35}=\frac{227}{35}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{2}{5}\\y=\frac{4}{7}\end{matrix}\right.\)

17 tháng 10 2020

1.

\(PT\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{x+5}-3\right)^2=0\left(x\ge-5\right)\)

\(\Leftrightarrow x-4=\sqrt{x+5}-3=0\Leftrightarrow x=4\).

17 tháng 7 2021

 đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)

\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)

BBDT AM-GM 

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)

vì \(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(x^2+z^2\ge2xz\)

\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)

\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)

dấu"=" xảy ra<=>x=y=z=1/3

3 tháng 7 2021

Áp dụng BĐT Cauchy-Schwarz dạng Engel có:

\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{4}{x^2+y^2+2xy}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{2}}=\dfrac{4}{\left(x+y\right)^2}+\dfrac{2}{\left(x+y\right)^2}=6\)

Dấu "=" xảy ra khi x=y=\(\dfrac{1}{2}\)

3 tháng 7 2021

áp dụng BDT AM-GM

\(=>x+y\ge2\sqrt{xy}=>1\ge2\sqrt{xy}=>\sqrt{xy}\le\dfrac{1}{2}=>xy\le\dfrac{1}{4}\)

\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\)

\(\ge\dfrac{4}{x^2+2xy+y^2}+\dfrac{1}{2.\dfrac{1}{4}}=\dfrac{4}{\left(x+y\right)^2}+2=4+2=6\)

dấu"=" xảy ra \(< =>x=y=\dfrac{1}{2}\)

NV
11 tháng 12 2018

\(P=3x+\dfrac{12}{x}+y+\dfrac{16}{y}+2\left(x+y\right)\ge2\sqrt{3x.\dfrac{12}{x}}+2\sqrt{y.\dfrac{16}{y}}+2.6=32\)

\(\Rightarrow P_{min}=32\) khi \(\left\{{}\begin{matrix}3x=\dfrac{12}{x}\\y=\dfrac{16}{y}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

23 tháng 1 2021

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

NV
23 tháng 1 2021

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)