Cho a,b >0 và ab=1. tìm min của \(A=\left(a+b+1\right)\left(a^2+b^2\right)+\dfrac{4}{a+b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai, bạn có thể thử kiểm tra với \(a=1.0001\) và \(b=0.9999\)
Bài này mẫu số là \(\left(a+b+c\right)^3\) thì đúng hơn, mũ 2 cách làm vẫn y hệt nhưng cho 1 kết quả rất xấu
\(A\ge3\left(a^2+b^2+c^2\right)+\dfrac{24\left(a+b+c\right)\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\)
\(=3\left(a+b+c\right)^2+\dfrac{192}{a+b+c}-48\)
\(=\dfrac{\sqrt{6}}{3}\left(a+b+c\right)^2+\dfrac{96}{a+b+c}+\dfrac{96}{a+b+c}+\left(3-\dfrac{\sqrt{6}}{3}\right)\left(a+b+c\right)^2-48\)
\(\ge3\sqrt[3]{\dfrac{96^2.\sqrt{6}}{3}}+\left(3-\dfrac{\sqrt{6}}{3}\right).3\left(ab+bc+ca\right)-48=...\)
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
☘ Áp dụng bất đửng thức AM - GM
\(\Rightarrow A=\left(a+b+1\right)\left(a^2+b^2\right)+\dfrac{4}{a+b}\)
\(\ge\left(a+b+1\right)\times2ab+\dfrac{4}{a+b}\)
\(=2\left(a+b+1\right)+\dfrac{4}{a+b}\)
\(=\left(a+b+\dfrac{4}{a+b}\right)+\left(a+b\right)+2\)
\(\ge4+2\sqrt{ab}+2=8\)
⚠ Tự kết luận nha.