tìm GTLN, GTNN của biểu thức sau:
a, x^2 - 6 +11
b, -x^2 +6x - 11
(ai đó làm ơn giúp mik với)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của biểu thức bằng 2 khi x = 3
b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTLN của biểu thức bằng - 2 khi x = 3
c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\) (đpcm)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1
\(6,\\ a,\\ 1,A=x^2+3x+7=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)
\(2,B=\left(x-2\right)\left(x-5\right)\left(x^2-7x+10\right)=\left(x-2\right)^2\left(x-5\right)^2\ge0\)
Dấu \("="\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
\(b,\\ 1,A=11-10x-x^2=-\left(x+5\right)^2+36\le36\)
Dấu \("="\Leftrightarrow x=-5\)
a) \(A=6x-x^2-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)
Dấu \(=\)khi \(x-3=0\Leftrightarrow x=3\).
b) \(B=x^2-5x-2=x^2-2.\frac{5}{2}x+\left(\frac{5}{2}\right)^2-\frac{33}{4}=\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\ge-\frac{33}{44}\)
Dấu \(=\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\).
a) \(6x-x^2-11\)
\(=-x^2+6x-11\)
\(=-\left(x^2-6x+11\right)\)
\(=-\left(x^2-6x+9+2\right)\)
\(=-[\left(x-3\right)^2+2]\)
Mà: \(\left(x-3\right)^2\ge0\)
\(\Rightarrow-\left(x-3\right)^2\le0\)
\(\Rightarrow-\left(x-3\right)^2-2\le0-2\)
\(\Rightarrow A\le-2\)
Dấu '' = '' xảy ra khi: \(\left(x-3\right)^2=0\Rightarrow x=3\)
Vậy giá trị lớn nhất của biểu thức \(6x-x^2-11=-2\) khi \(x=3\)
b) \(x^2-5x-2\)
\(=\left(x^2-2.\frac{5}{2}x+\frac{25}{4}\right)-\frac{33}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\)
Mà: \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\ge\frac{-33}{4}\forall x\)
Dấu '' = '' xảy ra khi: \(x-\frac{5}{2}=0\Rightarrow x=\frac{5}{2}\)
Vậy giá trị nhỏ nhất của biểu thức \(x^2-5x-2=\frac{-33}{4}\) khi \(x=\frac{5}{2}\)
a)\(x^2-6x+11\)
\(=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
Dấu "="xảy ra khi x=3
b)\(-x^2+6x-11\)
\(=-\left(x^2-6x+9\right)-2\)
\(=-\left(x-3\right)^2-2\le-2\)
Dấu "=" xảy ra khi x=3
A= 5x-x2= -x2+5x = -(x2-5x+25/4-25/4)= -(x-5/2)2+25/4
vì -(x-5/2)2< hoặc = 0 vs mọi x
nên - (x-5/2)+25/4< hoặc =25/4
dấu bằng xảy ra khi và chỉ khi x-5/2=0
=> x=5/2
câu b tg tự đặt dấu trừ ra ngoài rồi tách 11= 9+2 là ra giá trị lớn nhất của B=-2 tại x=3
a) \(x^2-6x+11\)
\(=x^2-6x+9+2\)
\(=\left(x+3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
b) \(-x^2+6x-1\)
\(=-\left(x^2-6x+1\right)\)
\(=-\left(x^2-6x+9-8\right)\)
\(=-\left[\left(x-3\right)^2-8\right]\)
\(=8-\left(x-3\right)^2\le8\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
a) x2 - 6 +11 = x2 + 5
x2 \(\ge0\forall x\)\(\Rightarrow\) x2 + 5 \(\ge5\forall x\)\(\Rightarrow\) x2 + 5 min = 5 khi : x2 = 0 \(\Rightarrow\) x = 0
Vậy GTNN của x2 - 6 +11 là 5 khi x = 0
b) -x2 + 6x - 11 = - (x2 - 6x +11) = - ( x2 -6x + 9 +2) = - ( x2 -6x + 9) - 2 = - (x - 3)2 - 2
(x - 3)2 \(\ge0\forall x\Rightarrow-\left(x-3\right)^2\le0\forall x\Rightarrow-\left(x-3\right)^2-2\le-2\forall x\Rightarrow\)- (x - 3)2 - 2 max = -2 khi (x - 3)2 = 0 \(\Rightarrow x-3=0\Rightarrow x=3\)
Vậy GTLN của -x2 + 6x - 11 là -2 khi x = 3
cảm ơn bạn nhiều nha