Bài 1:Chứng minh các biểu thức luôn nhạn giá trị dương với mọi x:
a)E=4x^2+6x+5. b)F=2x^2-3x+7
c)K=5x^2-4x+1. d)Q=3x^2+2x+5
GIÚP MÌNH GẤP CÁI.THANK NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=-x^2+2x-3=-\left(x^2-2x+1-1\right)-3=-\left(x-1\right)^2-2\le-2< 0\forall x\)
Vậy ta có đpcm
b, \(C=-x^2+4x-7=-\left(x^2-4x+4-4\right)-7=-\left(x-2\right)^2-3\le-3< 0\forall x\)
Vậy ta có đpcm
c, \(D=-2x^2-6x-5=-2\left(x^2+\frac{2.3}{2}x+\frac{9}{4}-\frac{9}{4}\right)-5\)
\(=-2\left(x+\frac{3}{2}\right)^2-\frac{1}{2}\le-\frac{1}{2}< 0\forall x\)
Vậy ta có đpcm
d, \(E=-3x^2+4x-4=-3\left(x^2-\frac{4}{3}x+\frac{4}{9}-\frac{4}{9}\right)-4\)
\(=-3\left(x-\frac{2}{3}\right)^2-\frac{8}{3}\le-\frac{8}{3}< 0\forall x\)
Vậy ta có đpcm
e, tự làm nhé
\(4)D=x^2+x+1\)
\(D=x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)
\(D=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}+1\)
\(D=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của x.
Các câu khác lm tương tự nhé.
Cho góp ý xíu: lần sau bn đưa từng câu một lên diễn đàn thì sẽ có câu trả lời nhanh hơn là đưa cùng một lúc như thế này đấy
hok tốt~
\(D=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)( đpcm )
\(F=2x^2+4x+3=2\left(x^2+2x+1\right)+1=2\left(x+1\right)^2+1\)
\(2\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2+1\ge1>0\forall x\)( đpcm )
\(G=3x^2-5x+3=3\left(x^2-\frac{5}{3}x+\frac{25}{36}\right)+\frac{11}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\)
\(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Rightarrow3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\forall x\)( đpcm )
\(H=4x^2+4x+2=4\left(x^2+x+\frac{1}{4}\right)+1=4\left(x+\frac{1}{2}\right)^2+1\)
\(4\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{1}{2}\right)^2+1\ge1>0\forall x\)( đpcm )
\(K=4x^2+3x+2=4\left(x^2+\frac{3}{4}x+\frac{9}{64}\right)+\frac{23}{16}=4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\)
\(4\left(x+\frac{3}{8}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\ge\frac{23}{16}>0\forall x\)( đpcm )
\(L=2x^2+3x+4=2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{23}{8}=2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\)
\(2\left(x+\frac{3}{4}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\ge\frac{23}{8}>0\forall x\)( đpcm )
a : x2 + 4x + 7 = (x + 2)2 + 3 > 0
b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0
c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0
d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0
e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0
f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0
B = x2 + 4x + 6
= (x2 + 4x + 4) + 2
= (x + 2)2 + 2 > 0
D = x2 + x + 1
= (x2 + 2x\(\frac{1}{2}\)+\(\frac{1}{4}\)) + \(\frac{3}{4}\)
= (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)> 0
F = 2x2 + 4x + 3
= (2x2 + 4x + 2) + 1
= (\(\sqrt{2x}+\sqrt{2}\))2 + 1 > 0
H = 4x2 + 4x + 2
= (4x2 + 4x + 1) + 1
= (2x + 1)2 + 1 > 0
K = 4x2 + 3x + 2
= (4x2 + 2.2.\(\frac{3}{4}\)x + \(\frac{9}{16}\)) + \(\frac{23}{16}\)
= (2x + \(\frac{3}{4}\))2 + \(\frac{23}{16}\)> 0
L = 2x2 + 3x + 4
= (x2 + 2x\(\frac{3}{2}\) + \(\frac{9}{4}\)) + x2 + \(\frac{7}{4}\)
= (x + \(\frac{3}{2}\))2 + x2 + \(\frac{7}{4}\)> 0
Vậy các biểu thức trên luôn dương với mọi x
\(B=x^2+2x+1+5=\left(x+1\right)^2+5>0\)
\(H=4x^2+4x+1+1=\left(2x+1\right)^2+1>0\)
Các đa thức còn lại đều có delta < 0 và hệ số a >0 nên luôn dương với mọi x
\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1>1\)(dương)
\(B=x^2+4x+6=x^2+2.x.2+2^2+2=\left(x+2\right)^2+2>2\)(dương)
\(C=x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)
\(D=x^2+x+1=x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)
\(E=x^2+3x+3=x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{3}{4}=\left(x+\frac{3}{4}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)
Bạn làm tương tự nhé
a, \(E=4x^2+6x+5=4\left(x^2+\frac{2.3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+5\)
\(=4\left(x+\frac{3}{4}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)
Vậy ta có đpcm
b, \(F=2x^2-3x+7=2\left(x^2-\frac{2.3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+7\)
\(=2\left(x-\frac{3}{4}\right)^2+\frac{47}{8}\ge\frac{47}{8}>0\forall x\)
Vậy ta có đpcm
c, \(K=5x^2-4x+1=5\left(x^2-\frac{2.2}{5}x+\frac{4}{25}-\frac{4}{25}\right)+1\)
\(=5\left(x-\frac{2}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}>0\forall x\)
Vậy ta có đpcm
d, \(Q=3x^2+2x+5=3\left(x^2+\frac{2}{3}x+\frac{1}{9}-\frac{1}{9}\right)+5\)
\(=3\left(x+\frac{1}{3}\right)^2+\frac{14}{3}\ge\frac{14}{3}>0\forall x\)
Vậy ta có đpcm