K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2019

a, xét 2 t.giác vuông ABH và MBH có:

             AH=MH(gt)

            HB cạnh chung

=> t.giác ABH=t.giác MBH(cạnh góc vuông-cạnh góc vuông)

b, vì I là trung điểm của BC nên AI=1/2 BC<=> AI=IC

=>t.giác AIC cân tại I

xét 2 t.giác vuông ABC và CDA có:

       AC cạnh chung

      \(\widehat{ACB}\)=\(\widehat{CAD}\)(t.giác AIC cân tại I)

=>t.giác ABC=t.giác CDA(cạnh góc vuông-góc nhọn)

=> CD=AB(2 cạnh tương ứng)

c,dễ nên tự làm

25 tháng 2 2020

a, xét 2 t.giác vuông ABH và MBH có:
             AH=MH(gt)
            HB cạnh chung
=> t.giác ABH=t.giác MBH(cạnh góc vuông-cạnh góc vuông)
b, vì I là trung điểm của BC nên AI=1/2 BC<=> AI=IC
=>t.giác AIC cân tại I
xét 2 t.giác vuông ABC và CDA có:
       AC cạnh chung
   góc ACB    = góc CAD (t.giác AIC cân tại I)
=>t.giác ABC=t.giác CDA(cạnh góc vuông-góc nhọn)
=> CD=AB(2 cạnh tương ứng)

c) Ta có \(\hept{\begin{cases}\widehat{ACB+\widehat{ABC=90}độ}\\HBM+HMB=90\end{cases}}\)(do tam giác ABC zuông tại a , do tam giác BHM zuông tại H

mà ABH=HBM do ( Tam giác AHB=tam giác HBM cmt)

=> ACB=HMB hay ACB =AMB 

1 tháng 3 2020

a,Ta có:
 \(AH\perp BC\) nên \(\widehat{AHB}\) +90 độ.
Vì M là tia đối của HA nên \(\widehat{MHB}\)= 90 độ.
Xét \(\Delta ABH\) và \(\Delta MBH\)có
AH = MH (gt)
\(\widehat{AHB}\) = \(\widehat{MHB}\) (= 90 độ )
BH : cạnh chung

\(\Rightarrow\Delta ABH=\Delta MBH\)( c.g.c )

b,Xét \(\Delta AHCv\text{à}\Delta MHC\)Ta có:

AH = HM (gt)

\(\widehat{AHC}\)\(\widehat{MHC}\)(= 90 độ)

HC : cạnh chung

\(\Rightarrow\Delta AHC=\Delta MHC\)( c.g.c)

\(\Rightarrow\)AC=CM ( t/ứ)

Mà AC = CN (gt) và CM = AC (cmt)

nên CM = CN

\(\Rightarrow\Delta CMN\)cân 

a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có

HA=HD

HB chung

Do đó:ΔABH=ΔDBH

Suy ra: BA=BD

hay ΔBAD cân tại B

b: Xét ΔCAD có 

CH là đường trung tuyến

DM là đường trung tuyến

AN là đường trung tuyến

CH cắt DM tại G

Do đó: A,G,N thẳng hàng