Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét 2 t.giác vuông ABH và MBH có:
AH=MH(gt)
HB cạnh chung
=> t.giác ABH=t.giác MBH(cạnh góc vuông-cạnh góc vuông)
b, vì I là trung điểm của BC nên AI=1/2 BC<=> AI=IC
=>t.giác AIC cân tại I
xét 2 t.giác vuông ABC và CDA có:
AC cạnh chung
\(\widehat{ACB}\)=\(\widehat{CAD}\)(t.giác AIC cân tại I)
=>t.giác ABC=t.giác CDA(cạnh góc vuông-góc nhọn)
=> CD=AB(2 cạnh tương ứng)
c,dễ nên tự làm
a, xét 2 t.giác vuông ABH và MBH có:
AH=MH(gt)
HB cạnh chung
=> t.giác ABH=t.giác MBH(cạnh góc vuông-cạnh góc vuông)
b, vì I là trung điểm của BC nên AI=1/2 BC<=> AI=IC
=>t.giác AIC cân tại I
xét 2 t.giác vuông ABC và CDA có:
AC cạnh chung
góc ACB = góc CAD (t.giác AIC cân tại I)
=>t.giác ABC=t.giác CDA(cạnh góc vuông-góc nhọn)
=> CD=AB(2 cạnh tương ứng)
c) Ta có \(\hept{\begin{cases}\widehat{ACB+\widehat{ABC=90}độ}\\HBM+HMB=90\end{cases}}\)(do tam giác ABC zuông tại a , do tam giác BHM zuông tại H
mà ABH=HBM do ( Tam giác AHB=tam giác HBM cmt)
=> ACB=HMB hay ACB =AMB
a: Xét ΔCHA vuông tại H và ΔCHM vuông tại H có
CH chung
HA=HM
=>ΔCHA=ΔCHM
=>góc ACH=góc MCH
=>CH là phân giác của góc ACM
b: Xét ΔAHC vuông tại H và ΔMHD vuông tại H có
HA=HM
góc HAC=góc HDM
=>ΔHAC=ΔHMD
=>HC=HD
=>AM là trung trực của CD