Chung to
a) 5x -1 chia het cho 4
b) 94260 -35137 chia het cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tổng : a + 4b + 4a + b = 5a + 5b = 5 ( a + b ) chia hết cho 5
Mặt khác ta có a + 4b chia hết cho 5 nên hiển nhiên 4a + b chia hết cho 5
=> đpcm
Có : \(\hept{\begin{cases}a,b\in N\\5⋮5\end{cases}}\Rightarrow5a,5b⋮5\)
=> ( 5a + 5b ) \(⋮\)5 => ( 4a + a + 4b + b ) \(⋮\)5 => ( a + 4b ) + ( 4a+b ) \(⋮\)5
*Nếu ( a + 4b ) \(⋮\)5
( a + 4b ) + ( 4a+b ) \(⋮\)5 => ( 4a + b ) \(⋮\)5
*Nếu ( 4a + b ) \(⋮\)5
( a + 4b ) + ( 4a+b ) \(⋮\)5 => ( a + 4b) \(⋮\)5
Vậy ( a + 4b ) \(⋮\)5 <=> (4a + b ) \(⋮\)5
Gọi (a+4b) là a,(10a+b) là b
Ta có:3a=3.(a+4b)=(3a+12b) chia hết cho 13
3a+b=(3a+12b+10a+b)=(13a+13b) chia hết cho 13
Mà (3a+12b) chia hết cho 13
=> (10a+b) chia hết cho 13
Xét biểu thức :
10x - y = 10(a + 4b) - (10a + b) = 10a + 40b - 10a - b = 39b.
Như vậy 10x - y ⋮ 13.
Do x ⋮ 13 nên 10x ⋮ 13. Suy ra y ⋮ 13.
Ta có:\(10a+b+3\left(a+4b\right)\)
\(=10a+b+3a+12b\)
\(=13a+13b\) chia hết cho 13
Mà 3(a+4b) chia hết cho 13 nên 10a+b chia hết cho 13
Ta có \(x-y⋮3=>5x-5y⋮3\)
Do 12 chia hết cho 3 nên 12y cũng chia hết cho 3
=> \(5x-5y+12y⋮3=>5x+7y⋮3\)
Vậy ...
Trong 4 số a,b,c,d có ít nhất 2 số cùng số dư khi chia cho 3.
Trong 4 số a,b,c,d : nếu có 2 số cùng số dư khi chia cho 4 thì hiệu 2 số đó sẽ chia hết cho 4.Nếu ko thì 4 số dư theo thứ tự 0,1,2,3
Với n=0 thì 5^n-1=0 chia hết cho 4
với n=1 thì 5^n-1=4 chia hết cho 4
với n>1 thì 5^n có chữ số tận cùng là 25 nên 5^n-1=(...25)-1=...24 chia hết cho 4
ta có:942^60-351^37=942^4.15-351^37=(...6)-(...1)=...5 chia hết cho 5