K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

help me

1 tháng 7 2017

a2+b2+c2=ab+bc+ca

<=>2a2+2b2+2c2=2ab+2bc+2ca

<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)=0

<=>(a-b)2+(b-c)2+(c-a)2=0

<=>a=b=c

mà a+b+c=3<=>a=b=c=1

=>P=0

20 tháng 9 2018

P=2017 chứ bạn

25 tháng 7 2016

Bài 1:

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+1\(\ge\)0+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+1967\(\ge\)0+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)2\(\le\)0+21=21

Dấu = khi x+4=0 <=>x=-4

b)đề sai à

26 tháng 7 2016

ài 1:

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+1$\ge$≥0+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+1967$\ge$≥0+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)2$\le$≤0+21=21

Dấu = khi x+4=0 <=>x=-4

b)đề sai à

17 tháng 9 2017

từ giả thiết => a;b;c<=1

\(a\le1\\ \Rightarrow a^3\le a^2\)

tt b^3<=b^2;c^3<=c^2

=>a^3+b^3+c^3\(\le\)a^2+b^2+c^2

dấu = xảy ra <=> a=0hoặc a=1 tt với b;c và a^2+b^2+c^2=a^3+b^3+c^3=1

=>S=1

2 tháng 2 2019

a2 + b2 + c2 = a3 + b3 + c3 = 1

\(\Rightarrow\)a2 ( a - 1 ) + b2 ( b - 1 ) + c2 ( c - 1 ) = 0 ( 1 )

a2 + b2 + c2 = 1 ; a2,b2,c2 \(\ge\)\(\Rightarrow\)a2,b2,c2 \(\le\)1

\(\Rightarrow\)\(\le\)1,b \(\le\)1, c \(\le\)\(\Rightarrow\)1 - a \(\ge\)0 ; 1-b  \(\ge\)0 ; 1 - c \(\ge\)0

\(\Rightarrow\)a2 ( a - 1 ) + b2 ( b - 1 ) + c2 ( c - 1 ) \(\le\)0 ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)a2 ( a - 1 ) = b2 ( b - 1 ) = c2 ( c - 1 ) = 0

\(\Rightarrow\)a = b = 0 ; c = 1 hoặc b = c = 0 ; a = 1 hoặc a = c = 0 ; b = 1

\(\Rightarrow\)S = 1