K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2017

từ giả thiết => a;b;c<=1

\(a\le1\\ \Rightarrow a^3\le a^2\)

tt b^3<=b^2;c^3<=c^2

=>a^3+b^3+c^3\(\le\)a^2+b^2+c^2

dấu = xảy ra <=> a=0hoặc a=1 tt với b;c và a^2+b^2+c^2=a^3+b^3+c^3=1

=>S=1

2 tháng 2 2019

a2 + b2 + c2 = a3 + b3 + c3 = 1

\(\Rightarrow\)a2 ( a - 1 ) + b2 ( b - 1 ) + c2 ( c - 1 ) = 0 ( 1 )

a2 + b2 + c2 = 1 ; a2,b2,c2 \(\ge\)\(\Rightarrow\)a2,b2,c2 \(\le\)1

\(\Rightarrow\)\(\le\)1,b \(\le\)1, c \(\le\)\(\Rightarrow\)1 - a \(\ge\)0 ; 1-b  \(\ge\)0 ; 1 - c \(\ge\)0

\(\Rightarrow\)a2 ( a - 1 ) + b2 ( b - 1 ) + c2 ( c - 1 ) \(\le\)0 ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)a2 ( a - 1 ) = b2 ( b - 1 ) = c2 ( c - 1 ) = 0

\(\Rightarrow\)a = b = 0 ; c = 1 hoặc b = c = 0 ; a = 1 hoặc a = c = 0 ; b = 1

\(\Rightarrow\)S = 1

1 tháng 7 2017

a2+b2+c2=ab+bc+ca

<=>2a2+2b2+2c2=2ab+2bc+2ca

<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)=0

<=>(a-b)2+(b-c)2+(c-a)2=0

<=>a=b=c

mà a+b+c=3<=>a=b=c=1

=>P=0

20 tháng 9 2018

P=2017 chứ bạn

4 tháng 3 2018

Ta có :

a^2>hoặc=0(vì mang số mũ dương)

Tương tự => b^2 và c ^2 như a^2

mà a^2+b^2+c^2=1=>a=b=c=1

=> a^2016+b^2017+c^2018=1

23 tháng 7 2020

Mình nghĩ \(a+b+c=1\) nữa chắc oke hơn :3

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Rightarrow1-3abc=1-ab-bc-ca\Rightarrow3abc=ab+bc+ca\)

\(1=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(=1+2\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca=0\Rightarrow3abc=0\)

Nếu \(a=0\Rightarrow b+c=1;b^2+c^2=1;b^3+c^3=1\)

\(\Rightarrow b^2+2bc+c^2=1\Rightarrow2bc=0\Rightarrow b=0\left(h\right)c=0\)

Cứ tiếp tục thì sẽ ra nhá :))

12 tháng 11 2017

help me

5 tháng 5 2018

Ta có: \(a^3+b^3+c^3-a^2+b^2+c^2=0\) 

\(\Leftrightarrow a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)  

Mà \(a^2+b^2+c^2=1\) 

\(\Rightarrow\hept{\begin{cases}a\le1\\b\le1\\c\le1\end{cases}}\Rightarrow\hept{\begin{cases}1-a0\\1-b\ge0\\1-c\ge0\end{cases}}\)  

\(\Rightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\) 

Dấu "=" xảy ra khi: \(a^2\left(1-a\right)=b^2\left(1-b\right)=c^2\left(1-c\right)\) 

Kết hợp với giả thiết 

=> a,b,c hoán vị 1;0;0 

=> S= 1

11 tháng 12 2019

Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath

Thya các giá trị của a, b, c., d vào M . Tính đc M = 0

23 tháng 10 2018

\(a^2+b^2+c^2=ab+bc+ac\)

\(a^2+b^2+c^2-ab-bc-ac=0\)

\(2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\forall a;b;c\)

\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c}\)

\(\Rightarrow\left(a-b+1\right)^{2018}+\left(b-c-1\right)^{2017}+\left(a-c\right)^{2016}\)

\(=\left(a-a+1\right)^{2018}+\left(c-c-1\right)^{2017}+\left(a-a\right)^{2016}\)

\(=1^{2018}+\left(-1\right)^{2017}+0^{2016}\)

\(=1+\left(-1\right)+0\)

\(=0\)

Vậy......

P.s: các phần thay a=b=c vào biểu thức có thể thay toàn bộ bằng a hoặc bằng b hoặc bằng c đều được nha