tính gt biểu thức
A= \(\dfrac{9^5.30^3}{3^{15}.5^3.6^2}\)
B= \(\dfrac{3^{11}.4+3^{11}.5}{3^3.9^5}\)
giúp mik đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{16^5\cdot15^5}{2^{10}\cdot3^5\cdot5^4}=\dfrac{2^{20}\cdot3^5\cdot5^5}{2^{10}\cdot3^5\cdot5^4}=2^{10}\cdot5=5120\)
b: \(B=\dfrac{2^{15}\cdot3+2^{19}\cdot10}{2^{12}\cdot26}=\dfrac{2^{15}\left(3+2^4\cdot10\right)}{2^{13}\cdot13}=2^2\cdot\dfrac{163}{13}=\dfrac{652}{13}\)
\(A=\left(2+\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}\right)\left(2+\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}\right)\)
\(A=\left[2-\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}\right]\left[2+\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}+3}\right]\)
\(A=\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)\)
\(A=2^2-\left(\sqrt{5}\right)^2\)
\(A=4-5\)
\(A=-1\)
____
\(B=\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\dfrac{12\left(3+\sqrt{6}\right)}{\left(3+\sqrt{6}\right)\left(3-\sqrt{6}\right)}\right]\left(\sqrt{6}+11\right)\)
\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}-\dfrac{12\left(3+\sqrt{6}\right)}{3}\right]\left(\sqrt{6}+11\right)\)
\(B=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)
\(B=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)\)
\(B=6-121\)
\(B=-115\)
A,
\(\left(7\dfrac{4}{9}+3\dfrac{7}{11}\right)-3\dfrac{4}{9}=7\dfrac{4}{9}+3\dfrac{7}{11}-3\dfrac{4}{9}\)
\(=7\dfrac{4}{9}-3\dfrac{4}{9}+3\dfrac{7}{11}=4+3\dfrac{7}{11}=7\dfrac{7}{11}\)
B,
\(5\dfrac{2}{7}.\dfrac{8}{11}+5\dfrac{2}{7}.\dfrac{5}{11}-5\dfrac{2}{7}.\dfrac{2}{11}=5\dfrac{2}{7}.\left(\dfrac{8}{11}+\dfrac{5}{11}-\dfrac{2}{11}\right)\)
\(=5\dfrac{2}{7}.1=5\dfrac{2}{7}\)
\(=\left(\dfrac{88}{132}-\dfrac{33}{132}+\dfrac{60}{132}\right):\left(\dfrac{55}{132}-\dfrac{132}{132}-\dfrac{84}{132}\right)\)
\(=\dfrac{115}{-161}=-\dfrac{115}{161}\)
\(3\dfrac{1}{5}\times\dfrac{10}{11}+1\dfrac{2}{11}\\ =\dfrac{16}{5}\times\dfrac{10}{11}+\dfrac{13}{11}\\ =\dfrac{16\times10}{5\times11}+\dfrac{13}{11}\\ =\dfrac{160}{55}+\dfrac{13}{11}\\ =\dfrac{32}{11}+\dfrac{13}{11}\\ =\dfrac{32+13}{11}\\ =\dfrac{45}{11}\)
\(5\dfrac{1}{3}:1\dfrac{2}{3}-1\dfrac{1}{5}\\ =\dfrac{16}{3}:\dfrac{5}{3}-\dfrac{6}{5}\\ =\dfrac{16}{3}\times\dfrac{3}{5}-\dfrac{6}{5}\\ =\dfrac{16\times3}{3\times5}-\dfrac{6}{5}\\ =\dfrac{48}{15}-\dfrac{6}{5}\\ =\dfrac{16}{5}-\dfrac{6}{5}\\ =\dfrac{16-6}{5}\\ =\dfrac{10}{5}\\ =2\)
\(3\dfrac{1}{5}\times\dfrac{10}{11}+1\dfrac{2}{11}\\ =\dfrac{3\times5+1}{5}\times\dfrac{10}{11}+\dfrac{1\times11+2}{11}\\ =\dfrac{16}{5}\times\dfrac{10}{11}+\dfrac{13}{11}\\ =\dfrac{160}{55}+\dfrac{13}{11}\\ =\dfrac{32}{11}+\dfrac{13}{11}\\ =\dfrac{45}{11}\)
\(5\dfrac{1}{3}:1\dfrac{2}{3}-1\dfrac{1}{5}\\ =\dfrac{5\times3+1}{3}:\dfrac{1\times3+2}{3}-\dfrac{1\times5+1}{5}\\ =\dfrac{16}{3}:\dfrac{5}{3}-\dfrac{6}{5}\\ =\dfrac{16}{3}\times\dfrac{3}{5}-\dfrac{6}{5}\\ =\dfrac{16}{5}-\dfrac{6}{5}\\ =\dfrac{10}{5}=2\)
a) \(x=\dfrac{-2}{7}+\dfrac{9}{7}=1\)
b) \(\dfrac{x}{3}=\dfrac{2}{5}+\dfrac{-4}{3}\)
\(\dfrac{x}{3}=\dfrac{-14}{15}\)
\(\Rightarrow x=\dfrac{3.-14}{15}=\dfrac{-14}{5}\)
\(x=\dfrac{-2}{7}+\dfrac{9}{7}\)
\(x=1\)
a) \(=\dfrac{157}{8}.\dfrac{12}{7}-\dfrac{61}{4}.\dfrac{12}{7}=\dfrac{12}{7}\left(\dfrac{157}{8}-\dfrac{61}{4}\right)=\dfrac{12}{7}.\dfrac{35}{8}=\dfrac{15}{2}\)
b) \(\dfrac{2}{5}.\dfrac{1}{3}-\dfrac{2}{15}\div\dfrac{1}{5}+\dfrac{3}{5}.\dfrac{1}{3}=\dfrac{1}{3}\left(\dfrac{2}{5}+\dfrac{3}{5}\right)-\dfrac{2}{15}.5=\dfrac{1}{3}.1-\dfrac{2}{3}=\dfrac{1}{3}-\dfrac{2}{3}=-\dfrac{1}{3}\)
c) \(=-\dfrac{80}{9}\)
\(1\dfrac{4}{5}+2\dfrac{5}{7}+3\dfrac{4}{5}+4\dfrac{5}{7}\)
\(\text{=}\left(1\dfrac{4}{5}+3\dfrac{4}{5}\right)+\left(2\dfrac{5}{7}+4\dfrac{5}{7}\right)\)
\(\text{=}1+3+\left(\dfrac{4}{5}+\dfrac{4}{5}\right)+2+4+\left(\dfrac{5}{7}+\dfrac{5}{7}\right)\)
\(\text{=}10+\dfrac{8}{5}+\dfrac{10}{7}\text{=}131\dfrac{1}{35}\)
A=\(\dfrac{9^5.30^3}{3^{15}.5^3.6^2}=\dfrac{3^{10}.3^3.10^3}{3^{15}.5^3.2^2.3^2}=\dfrac{3^{13}.2^3.5^3}{3^{15}.5^3.2^2.3^2}=\dfrac{2}{3^4}=\dfrac{2}{81}\)
B=\(\dfrac{3^{11}.4+3^{11}.5}{3^3.9^5}=\dfrac{3^{11}.\left(4+5\right)}{3^3.\left(3^2\right)^5}=\dfrac{3^{11}.3^2}{3^3.3^{10}}=1\)