cho đường thẳng y=(m-2)x+n (d)
a) với giá trị nào của m,n thì đường thẳng (d) đi qua gốc tọa độ
b)với giá trị nào của m và n thì đường thẳng (d) đi qua điểm A(2;5) và có tung độ gốc là 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đồ thị hàm số bậc nhất y = (1 – 4m)x + m – 2 đi qua gốc tọa độ khi 1 – 4m ≠ 0 và m – 2 = 0
Ta có: 1 – 4m ≠ 0 ⇔ m ≠ 1/4
m – 2 = 0 ⇔ m = 2
Vậy với m = 2 thì (d) đi qua gốc tọa độ.
a: Thay x=0 và y=0 vào (d), ta được:
\(0\left(2-5m\right)+m-3=0\)
=>m-3=0
=>m=3
b: Để (d) tạo với trục Ox một góc nhọn thì 2-5m>0
=>5m<2
=>\(m< \dfrac{2}{5}\)
Để (d) tạo với trục Ox một góc tù thì 2-5m<0
=>5m>2
=>\(m>\dfrac{2}{5}\)
c: Thay x=0 và \(y=\dfrac{2}{3}\) vào (d), ta được:
\(0\left(2-5m\right)+m-3=\dfrac{2}{3}\)
=>\(m-3=\dfrac{2}{3}\)
=>\(m=\dfrac{2}{3}+3=\dfrac{11}{3}\)
d: thay \(x=\dfrac{1}{2};y=0\) vào (d), ta được:
\(\dfrac{1}{2}\left(2-5m\right)+m-3=\dfrac{2}{3}\)
=>\(1-\dfrac{5}{2}m+m-3=\dfrac{2}{3}\)
=>\(-\dfrac{3}{2}m-2=\dfrac{2}{3}\)
=>\(-\dfrac{3}{2}m=2+\dfrac{2}{3}=\dfrac{8}{3}\)
=>\(m=-\dfrac{8}{3}:\dfrac{3}{2}=-\dfrac{16}{9}\)
a: Thay x=0 và y=0 vào (d), ta được:
m-2=0
hay m=2
c: Thay x=0 và y=2 vào (d), ta được:
m-2=2
hay m=4
a: Thay x=0 và y=0 vào (d), ta được:
0(m-2)+n=0
=>n=0
b: Vì tung độ gốc là 3 nên (d) đi qua (0;3)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2\left(m-2\right)+n=5\\\left(m-2\right)\cdot0+n=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=3\\m=3\end{matrix}\right.\)