Cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết BD= 15 cm, CD= 20 cm. Tính HB, HC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: BC=BD+DC=15+20=35(cm)
+ AD là phân giác => DC/DB=AB/AC
=> AB/AC=20/15=4/3
=> AB=4AC/3
lại có AB^2+AC^2=BC^2
<=> 16AC^2/9+AC^2=BC^2
<=> 25AC^2/9=1225
<=> AC^2=441
có tam giác ABC vuông tại A, AH là đường cao
=> AC^2=CH.BC
=> CH=AC^2/BC=441/35=12.6(cm)
=> BH=35-12.6=22.4(cm)
Lời giải:
Theo tính chất tia phân giác:
$\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}$
Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC$
$AC^2=CH.BC$
$\Rightarrow \frac{BH}{CH}=(\frac{AB}{AC})^2=\frac{9}{16}$
Mà $BH+CH=BC=BD+CD=15+20=35$ (cm)
Do đó:
$BH=35:(9+16).9=12,6$ (cm)
$CH=35:(9+16).16=22,4$ (cm)
A C H D 24 cm B
có: HC . HB = AH2 = 576 trong tam giác vuông đường cao ứng với cạnh huyền bằng tích hình chiếu 2 cạnh góc vuông trên cạnh huyền) (1)
mà HC - HB = 14 => HC = 14 + HB
thay vào (1): HC . HB = (14 + HB) . HB = HB2 + 14HB = 576
=> HB2 + 14HB - 576 = 0 => (HB - 18) (HB + 32) = 0 => HB = 18 cm
=> HC = 14 + 18 = 32 cm => BC = 18 + 32 = 50
=> AB2 = BH . BC = 18 . 50 = 900 => AB = 30 cm
=> AC2 = CH . BC = 32 . 50 = 1600 => AC = 40 cm
Có: BD/DC = AB/AC => BD/AB = DC/AC và BD + DC = 50
áp dụng tính chất dãy tỉ số bằng nhau đc:
\(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+CD}{AB+AC}=\frac{50}{70}=\frac{5}{7}\)
- => BD = 5 . AB = 5 . 30 : 7 = 150/7 cm
=> CD = 50 - 150/7 = 200/7 cm
=> HD = 50 - CD - BH = 50 - 200/7 - 18 = 24/7 cm
xét tam giác vuông ADH:
AD2 = AH2 + DH2 = 242 + (24/7)2
- => AD = \(\sqrt{24^2+\left(\frac{24}{7}\right)^2}\approx24,244\)cm
Ta có: HB.HC=AH^2=24^2=576.
Biết được tích HB.HC là 576, hiệu HC-HB là 14(theo đầu bài)thì tính được BC=HB+HC
(HC+HB)^2=(HC-HB)^2+4.HC.HB (cái này bạn khai triển ra là thấy)=14^2+4.576 =2500
=> HC+HB=căn(2500)=50=>BC=50=>BD+DC=50( vì BD+DC=BC)
HC+HB=50 mà HC-HB=14=> HC=32 và HB=18( tính hai số biết tổng và hiệu)
Biết được tổng BD+DC, để tính được BD, ta đi tính tỉ số BD/DC:
BD/DC=AB/AC ( vì AD là phân giác của tam giác ABC)=>BD=150/7
=>HD=BD-HB=150/7-18=24/7.
Áp dụng định lý py-ta-go vào tam giác vuông AHD ta có:
AD^2=AH^2+HD^2=24^2+(24/7)^2=28800/49
=>AD=căn(28800/49) sấp sỉ 24,244.
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
A B C H D
Theo tính chất của tia phân giác ta có
\(\frac{AC}{AB}=\frac{DC}{DB}=\frac{68}{51}=\frac{4}{3}\Rightarrow AC=\frac{4}{3}AB\)
Lại có \(AB^2+AC^2=BC^2=\left(68+51\right)^2=119^2=14161\)
\(\Rightarrow\left(\frac{4}{3}AB\right)^2+AB^2=14161\Rightarrow\frac{25}{9}AB^2=14161\Rightarrow AB=71,4\left(cm\right)\)
\(\Rightarrow AC=\frac{4}{3}.71,4=95,2\left(cm\right)\)
Ta có \(AB.AC=BC.AH\Rightarrow AH=\frac{AB.AC}{CB}=57,12\left(cm\right)\)
Xét \(\Delta AHC\)có \(HC=\sqrt{AC^2-AH^2}=\sqrt{5800}=76,16\left(cm\right)\)
\(\Rightarrow HB=BC-HC=119-76,16=42,84\left(cm\right)\)
10c - 11b / 9 =11a-9c/10=9b-10a/11 .chứng minh a/9=b/10=c/11
Câu hỏi của Vũ Kim Ngân - Toán lớp 9 - Học toán với OnlineMath
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{9}{16}\)
\(\Leftrightarrow HB=\dfrac{9}{16}HC\)
Ta có: \(HB+HC=BC\)
\(\Leftrightarrow HC\cdot\dfrac{25}{16}=35\)
\(\Leftrightarrow HC=22.4\left(cm\right)\)
\(\Leftrightarrow HB=12.6\left(cm\right)\)