Tính A= \(\sqrt{20+\sqrt{20+\sqrt{20+\sqrt{20...+\sqrt{20}}}}}\)
(CÓ 2014 DẤU CĂN )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}\sqrt{20}>\sqrt{16}=4\)
\(\Rightarrow4
Số này lớn hơn 4 và nhỏ hơn 5 thôi, (rất gần 5)
Tính thế nào được A.
\(\Rightarrow A+B< 3+5=8\)
mặt khác ta có A+B>\(\sqrt{20}+\sqrt[3]{24}=7.3566....>7\)\(\Rightarrow\left[A+b\right]=7\)
D=\(\sqrt{20+\sqrt{20+....+\sqrt{20+\sqrt{25}}}}\)= \(\sqrt{20+\sqrt{20+....+\sqrt{20+5}}}\)=\(\sqrt{20+\sqrt{20+....+\sqrt{25}}}\)
=............=\(\sqrt{20+\sqrt{25}}\)=\(\sqrt{20+5}=5\)
Vậy D=5
lụi đê ( lụi nhg đúng :D )
\(\sqrt{20+\sqrt{20+\sqrt{20+\sqrt{20+....+\sqrt{20}}}}}=A\)
\(20+\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}=A^2\)
20 + A = A2
GIẢI RA TÌM A