Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số này lớn hơn 4 và nhỏ hơn 5 thôi, (rất gần 5)
Tính thế nào được A.
\(\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}<\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{25}}}}=5\)
\(\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}>\sqrt{20}>\sqrt{16}=4\)
\(\Rightarrow4<\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}<5\)
Vì có nhiều dấu căn nên lấy giá trị của biểu thức đã cho là 5.
lụi đê ( lụi nhg đúng :D )
\(\sqrt{20+\sqrt{20+\sqrt{20+\sqrt{20+....+\sqrt{20}}}}}=A\)
\(20+\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}=A^2\)
20 + A = A2
GIẢI RA TÌM A
Xét tử :
\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>3-\sqrt{56+\sqrt{56+\sqrt{56+...+\sqrt{64}}}}\)
\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>3-\sqrt{56+\sqrt{56+\sqrt{56+...+8}}}\)
\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>3-\sqrt{64}=3-8=-5\) ( bước này tự hiểu nhé )
Xét mẫu :
\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 6-\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}\)
\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 6-\sqrt{2+\sqrt{2+\sqrt{2+...+2}}}\)
\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 6-\sqrt{4}=6-2=4\) ( bước này cũng tự hiểu -,- )
\(\Rightarrow\)\(A=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}>\frac{-5}{4}>-1\) \(\left(1\right)\)
(Xét 1 lần nữa -,- )
Xét tử :
\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3-\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}\)
\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3-\sqrt{2+\sqrt{2+\sqrt{2+...+2}}}\)
\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3-\sqrt{4}=3-2=1\)
Xét mẫu :
\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>6-\sqrt{56+\sqrt{56+\sqrt{56+...+\sqrt{64}}}}\)
\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>6-\sqrt{56+\sqrt{56+\sqrt{56+...+8}}}\)
\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>6-\sqrt{64}=6-8=-2\)
\(\Rightarrow\)\(A=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}< \frac{1}{-2}< 0\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(-1< A< 0\)
Vậy A không thể là 1 số nguyên
...
Có cách khác ngắn hơn nha bn!
Đặt:
\(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a>0\)(có 2019 dấu căn)
\(\Rightarrow3+\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a^2\) (có 2018 dấu căn)
\(\Rightarrow\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a^2-3\) (có 2018 dấu căn)
Thay vào A,ta đc:
\(A=\frac{3-a}{6-\left(a^2-3\right)}=\frac{3-a}{9-a^2}=\frac{1}{3+a}\)
Do a>0 \(\Rightarrow0< A=\frac{1}{3+a}< 1\)
Vậy : A ko thể là số nguyên
a. \(\sqrt{\frac{3}{7}}=\sqrt{\frac{3\cdot7}{7^2}}=\frac{\sqrt{21}}{7}\)
b.\(\sqrt{\frac{7}{20}}=\sqrt{\frac{7\cdot5}{4\cdot5\cdot5}}=\frac{\sqrt{35}}{2\cdot5}=\frac{\sqrt{35}}{10}\)
c.\(\sqrt{\frac{11}{12}}=\sqrt{\frac{11\cdot3}{4\cdot3\cdot3}}=\frac{\sqrt{33}}{2\cdot3}=\frac{\sqrt{33}}{6}\)
d.\(\sqrt{\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{3}}=\sqrt{\frac{3\left(\sqrt{3}-\sqrt{2}\right)^2}{3\cdot3}}=\frac{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{3}=\frac{3-2\sqrt{3}}{3}\)
Tính giá trị của biểu thức: \(Q=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6+\sqrt{9}}}}}\) (có 2018 dấu căn)
\(Q=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6+\sqrt{9}}}}}\)
Có \(\sqrt{6+\sqrt{9}}=\sqrt{6+3}=\sqrt{9}=3\)
=> \(\sqrt{6+\sqrt{6+\sqrt{9}}}=\sqrt{6+3}=\sqrt{9}=3\)
=> \(\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{9}}}}=\sqrt{6+3}=\sqrt{9}=3\)
...........
=> \(Q=\sqrt{6+\sqrt{6+..........+\sqrt{6+\sqrt{9}}}}=\sqrt{6+3}=\sqrt{9}=3\)
Vậy Q=3
nhầm đề ak,cái này tính D nghe hợp lý hơn
D=\(\sqrt{20+\sqrt{20+....+\sqrt{20+\sqrt{25}}}}\)= \(\sqrt{20+\sqrt{20+....+\sqrt{20+5}}}\)=\(\sqrt{20+\sqrt{20+....+\sqrt{25}}}\)
=............=\(\sqrt{20+\sqrt{25}}\)=\(\sqrt{20+5}=5\)
Vậy D=5