Cho a > b, b>2 . Chứng minh a.b > a +b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a>2=>a=2+m, b>2=>b=2+n (m,n thuộc N*)
=>a.b=(2+m).(2+n)=2.(2+n)+m.(2+n)=4+2n+2m+mn=4+m+m+n+n+mn=(4+m+n)+(m+n+mn)=(2+m)+(2+n)+(m+n+mn)>(2+m)+(2+m)=a.b
=>ĐPCM
Vì a>2=>a=2+m, b>2=>b=2+n (m,n thuộc N*)
=>a.b=(2+m).(2+n)=2.(2+n)+m.(2+n)=4+2n+2m+mn=4+m+m+n+n+mn=(4+m+n)+(m+n+mn)=(2+m)+(2+n)+(m+n+mn)>(2+m)+(2+m)=a.b
=>ĐPCM
Vì \(a>2\)
và \(b>2\)
\(\Rightarrow a>0\)và \(b>0\)
Vì \(a>2\)và \(b>0\)
\(\Rightarrow ab>2b\)(1)
Vì \(b>2\)và \(a>0\)
\(\Rightarrow ab>2a\) (2)
Cộng vế tương ứng (1) và (2) ta có :
\(2ab>2\left(a+b\right)\)
\(\Rightarrow ab>a+b\)(đpcm)
a>2 => a lớn hơn hoặc bằng 3
b>2 => b lớn hơn hoặc 3
= > a+ b lớn hơn hoặc bằng 6
=> a.b lớn hơn hoặc bằng 9
=> a+b nhỏ hơn a.b
\(a>2\Rightarrow a-2>0\)
\(b>2\Rightarrow b-2>0\)
\(\Rightarrow\left(a-2\right)\left(b-2\right)>0\Leftrightarrow ab-2a-2b+4>0\)
\(\Leftrightarrow ab+4>2\left(a+b\right)\)
Ta có: \(a.b>2.2=4\Rightarrow ab+ab>ab+4>2\left(a+b\right)\)
\(\Rightarrow2ab>2\left(a+b\right)\)
\(\Rightarrow ab>a+b\)
a + b < a . b
=> a + b là 1 tổng và 1 tổng thì ta có : a+ b = a+ b
=> a . b là 1 tích và 1 tích thì sẽ đc nhân nhiều lần lên phụ thuộc vào phép tính( a,b thuộc N*),ta có : a .b = a + a + a +...
=> Ta có ví dụ : a= 5;b=3.
=> 5 + 3 < 5 . 3
=> 8 < 15.
=> a+b<a.b
\(\left\{{}\begin{matrix}a>b\\b>2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>2\\b>2\end{matrix}\right.\)
Nên \(\left\{{}\begin{matrix}a=2+m\\b=2+n\end{matrix}\right.\)
Khi đó:
\(\left\{{}\begin{matrix}ab=\left(2+m\right)\left(2+n\right)\\a+b=2+m+2+n\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ab=4+2n+2m+mn\\a+b=4+m+n\end{matrix}\right.\)
Dễ thấy: \(4+2\left(m+n\right)+mn>4+m+n\)
Nên ta có đpcm