K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017
Câu hỏi của Freya - Toán lớp 7 - Học toán với OnlineMath
10 tháng 10 2017

Gọi các số lần lượt là a1; a2; a3; ..... ;a11 

Gỉa sử a1 < a2 < a< a4 < a5 < a6 < 32 < a7 < a8 < a9 < a10 < a11

Chọn đc 6 số là :

a1 + a2 + ... + a6 < 32 x 6

-> a1 + a+ .... + a6 < 192 < 195

Nếu a1 > a2 > a3 > ..... > a11

Ta chọn a6 + a7 + .... + a11 < 390 - 32 x 6 < 195

-> Vậy luôn chọn đc 6 số

Ngọc mk nha ~~~ Bài này cô Loan chữa ý. Thank you ~~~~~

9 tháng 10 2017

bn đi copy bài ng khác cũng fai bt copy chứ các bn có đọc đề bài ko vậy ???

8 tháng 10 2017

* Ta thấy 4 = 1.4 = (-1).(-4) = 2.2 = (-2).(-2) 
như vậy các số (trong 11 số cần tìm chỉ có thể lấy từ những cặp tương ứng như trên), và xếp xen kẻ nhau: chẳn hạn 1,4,1,4... 
mặt khác, giả sử ta chọn số a1 làm mốc, thì do có 11 số (số lẻ) nên số a11 = a1 
do xếp vòng tròn nên vẫn phải có a11.a1 = 4 => a1.a1 = 4 => a1 = -2 hoặc a1 = 2 
Vậy 11 số nguyên phải bằng nhau và bằng -2 hoặc đều bằng 2 
* Nếu có 10 số, thì chọn thêm được 2 cặp 1,4 hoặc -1,-4 
khi đó có 4 đáp số là: 
* các số đều bằng -2 
* các số đều bằng 2 
* 5 số bằng -1, 5 số bằng -4 xếp xen kẻ nhau 
* 5 số bằng 1, 5 số bằng 4 xếp xen kẻ nhau 
---------- 

9 tháng 10 2017

bn có đọc đề bài ko vậy Be xiu sai bét luôn

6 tháng 1

Ta chia các số từ 1 đến 96 thành các cặp:

(1, 4), (2,5), (3,6), (7,10), (8,11), (9,12), ..., (91, 94), (92, 95), (93, 96)

(Do \(96⋮6\) nên ta có thể chia theo quy luật trên)

 Có tất cả 48 cặp như thế. Do ta chọn 50 số khác nhau nên chắc chắn sẽ tìm được 2 số có hiệu bằng 3.

Giả sử  0≤a1<a2<...<a1010≤2015  là 1010 số tự nhiên được chọn .

Xét 1009 số : bi=a1010−ai(i=1,2,...,1009)

=>  0<b1009<b1008<...<b1≤2015

Theo nguyên lý Dirichlet trong 2019 số  ai,bi không vượt quá 2015 luôn tồn tại 2 số bằng nhau, mà các số  ai,bi  không thể bằng nhau

=>  Tồn tại i , j  sao cho  :  aj=bi

=>  aj=a1010−ai=>a1010=ai+aj     ( đpcm ) .

11 tháng 5 2019

Dirchle bạn mik nói là đi dép lê =))

2 tháng 9 2019

Bạn tham khảo  tại đây:

Câu hỏi của Park Jihoon - Toán lớp 7 - Học toán với OnlineMath

Cách làm là như vậy đó.Bạn tự nghiên cứu nha !

14 tháng 10 2023

ok

18 tháng 11 2015

qua de tong tat ca cac so bang 200 thi se co mot so so co tong la 100

8 tháng 6

Để chứng minh rằng trong 100 số tự nhiên đã cho, chúng ta có thể tìm được một số các số sao cho tổng của chúng bằng 100, ta sẽ sử dụng nguyên lý Dirichlet và xem xét các tổng con của tập hợp các số này.

Gọi \( S \) là tập hợp gồm 100 số tự nhiên khác 0 không vượt quá 100. Giả sử các số trong tập \( S \) là \( a_1, a_2, \ldots, a_{100} \). Tổng của 100 số này là 200, nghĩa là:
\[ a_1 + a_2 + \cdots + a_{100} = 200. \]

Xét tất cả các tổng con của tập hợp \( S \), nghĩa là xét tất cả các tổng con có dạng:
\[ a_{i_1} + a_{i_2} + \cdots + a_{i_k}, \]
với \( 1 \leq i_1 < i_2 < \cdots < i_k \leq 100 \).

Có tất cả \( 2^{100} \) tổng con khác nhau (bao gồm cả tổng con rỗng là 0). Ta sẽ sử dụng nguyên lý Dirichlet để tìm ra tổng con bằng 100.

Chia các tổng con thành hai loại:
1. Các tổng con nhỏ hơn hoặc bằng 100.
2. Các tổng con lớn hơn 100 nhưng nhỏ hơn hoặc bằng 200.

Nếu có một tổng con nào đó bằng 100, ta đã hoàn thành chứng minh. 

Giả sử ngược lại không có tổng con nào bằng 100. Khi đó, mỗi tổng con đều là duy nhất và nằm trong khoảng từ 0 đến 200.

Xét hai tổng con bất kỳ \( T_1 \) và \( T_2 \) mà \( T_1 < T_2 \). Do tổng toàn bộ các số là 200, ta có:
\[ T_2 - T_1 \leq 200. \]
Nếu không có tổng con nào bằng 100, ta xét các hiệu:
\[ T - (T - 100) = 100, \]
với \( T \) là tổng của tất cả các phần tử. Nếu tồn tại hai tổng con \( T_1 \) và \( T_2 \) sao cho \( T_1 < T_2 \) và \( T_2 - T_1 = 100 \), thì hiệu này sẽ cho chúng ta tổng bằng 100. Vì tổng các số là 200 nên hiệu giữa hai tổng con \( T_2 \) và \( T_1 \) phải tồn tại và bằng 100.

Như vậy, theo nguyên lý Dirichlet và sự ràng buộc của tổng 200, chắc chắn tồn tại một tổng con bằng 100 trong tập hợp các số này. 

Đây là điều cần chứng minh.

1. Cho sáu số nguyên dương đôi một khác nhau và đều nhỏ hơn 10. Chứng minh rằng luôn tìm được ba số trong đó có một số bằng tổng hai số còn lại.2. Cho một bảng ô vuông kích thước 5× 5. Người ta viết vào mỗi ô của bảng một trong các số -1, 0, 1; sau đó tính tổng của các số theo từng cột, theo từng dòng và theo từng đường chéo. Chứng minh rằng trong tất cả  các tổng đó luôn tồn tại...
Đọc tiếp

1. Cho sáu số nguyên dương đôi một khác nhau và đều nhỏ hơn 10. Chứng minh rằng luôn tìm được ba số trong đó có một số bằng tổng hai số còn 
lại.
2. Cho một bảng ô vuông kích thước 5× 5. Người ta viết vào mỗi ô của bảng một trong các số -1, 0, 1; sau đó tính tổng của các số theo từng cột, theo từng dòng và theo từng đường chéo. Chứng minh rằng trong tất cả  các tổng đó luôn tồn tại hai tổng có giá trị bằng nhau.
3. Có 20 người quyết định đi bơi thuyền bằng 10 chiếc thuyền đôi. Biết rằng nếu 2 người A và B mà không quen nhau thì tổng số những người quen của A và những người quen của B không nhỏ hơn 19. Chứng minh rằng có thể phân công vào các thuyền đôi sao cho mỗi thuyền đều là hai người quen nhau

❤️❤️❤️

1
18 tháng 4 2020

mình không biết