giải phương trình
sin8x -cos6x = \(\sqrt{3}\)( sin6x + cos8x )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/
\(\Leftrightarrow\sqrt{3}sin3x-cos3x=sin2x-\sqrt{3}cos2x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin3x-\frac{1}{2}cos3x=\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x\)
\(\Leftrightarrow sin\left(3x-\frac{\pi}{6}\right)=sin\left(2x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{6}=2x-\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{6}=\pi-2x+\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{3\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)
e/
\(\Leftrightarrow\frac{1}{2}sin8x-\frac{\sqrt{3}}{2}cos8x=\frac{\sqrt{3}}{2}sin6x+\frac{1}{2}cos6x\)
\(\Leftrightarrow sin\left(8x-\frac{\pi}{3}\right)=sin\left(6x+\frac{\pi}{6}\right)\)
\(\Rightarrow\left[{}\begin{matrix}8x-\frac{\pi}{3}=6x+\frac{\pi}{6}+k2\pi\\8x-\frac{\pi}{3}=\pi-6x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{28}+\frac{k\pi}{7}\end{matrix}\right.\)
M = 3(sin^8x-cos^8x) + 4(cos^6x-2sin^6x)+6sin^4x
Ta có:
sin^8(x) - cos^8(x) = [sin^4(x) ]² - [cos^4(x)]²
= (sin²x + cos²x)(sin²x -cos²x).[ sin^4(x) + cos^4(x) ]
= (sin²x -cos²x)[ sin^4(x) + cos^4(x) ]
= sin^6(x) - cos^6(x) + sin²x.cos^4(x) -cos²x.sin^4(x)
Lúc đó M viết lại là:
M = 3.[sin^6(x) - cos^6(x) + sin²x.cos^4(x) -cos²x.sin^4(x) ] + 4.[ cos^6(x) -2sin^6(x) ] + 6sin^4(x)
M = -5sin^6(x) + cos^6(x) -3sin^4(x).cos²x + 3sin²x.cos^4(x) +6sin^4(x)
M = -3sin^(6)x - 3cos²x.sin^4(x) + cos^4(x).sin²x + cos^6(x) - 2sin^6(x) + 2sin²x.cos^4(x) + 6sin^4(x)
M = -3sin^4(x).(sin²x + cos²x ) + cos^4(x).[sin²x + cos²x ] -2sin²x.[sin^4(x) - cos^4(x) ] + 6sin^4(x)
M = 3sin^4(x) + cos^4(x) -2sin²x.[sin²x - cos²x]
M = 3sin^4(x) + cos^4(x) -2sin^4(x) + 2sin²x.cos²x
M = sin^4(x) + 2sin²x.cos²x + cos^4(x)
M = [sin²x + cos²x ]² = 1
\(D=\frac{sin4x+sin5x+sin6x}{cos4x+cos5x+cos6x}\)
\(=\frac{\left(sin4x+sin6x\right)+sin5x}{\left(cos4x+cos6x\right)+cos5x}\)
\(=\frac{2sin\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+sin5x}{2cos\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+cos5x}\)
\(=\frac{2sin5x.cos\left(-x\right)+sin5x}{2cos5x.cos\left(-x\right)+cos5x}=\frac{sin5x\left(2.cos\left(-x\right)+1\right)}{cos5x\left(2.cos\left(-x\right)+1\right)}=\frac{sin5x}{cos5x}=tan5x\)
sin 6 x + cos 6 x = 4 cos 2 2 x ⇔ sin 2 x + cos 2 x 3 - 3 sin 2 x . cos 2 x ( sin 2 x + cos 2 x ) = 4 cos 2 2 x