Cho tam giác ABC vuông tại A, có AB = 6cm, đường cao AH = 3cm. Tính độ dài cạnh BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra: AH=DE
\(a,AC=\sqrt{BC^2-AB^2}=3\sqrt{3}\left(cm\right)\\ \sin B=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}=\sin60^0\\ \Rightarrow\widehat{B}=60^0\\ \Rightarrow\widehat{C}=30^0\)
Áp dụng định lý Pytago trong tam giác ABH vuông tại H. Ta có:
Trong tam giác vuông ABC vuông tại A có AH là đường cao
Áp dụng định lý Py-ta-go cho tam giác vuông ABC ta có:
Vậy AC = 7,5 (cm); BC = 12,5 (cm)
Đáp án cần chọn là: B
a) Xét hai tam giác vuông: ∆ABC và ∆HBA có:
∠B chung
⇒ ∆ABC ∽ ∆HBA (g-g)
b) ∆ABC vuông tại A (gt)
⇒ BC² = AB² + AC² (Pytago)
= 6² + 8²
= 100
⇒ BC = 10
Do ∆ABC ∽ ∆HBA (cmt)
⇒ AC/AH = BC/AB
⇒ AH = AB.AC/BC
= 6.8/10
= 4,8 (cm)
∆ABH vuông tại H
⇒ AB² = AH² + BH² (Pytago)
⇒ BH² = AB² - AH²
= 6² - (4,8)²
= 12,96
⇒ BH = 3,6 (cm)
a) Ta có:
- Góc A của tam giác ABC là góc vuông, nên ta có thể tính được độ dài đoạn thẳng AH bằng cách sử dụng định lí Pythagoras: AH = sqrt(AB^2 + AC^2) = sqrt(6^2 + 8^2) = 10.
- Góc A của tam giác ABC cũng là góc giữa đường cao AH và cạnh huyền BC, nên ta có thể tính được tỉ số giữa độ dài đoạn thẳng AH và độ dài cạnh huyền BC: AH/BC = AC/AB = 8/6 = 4/3.
- Từ tỉ số này, ta có thể suy ra rằng tam giác ABC đồng dạng với tam giác HBA (vì cả hai tam giác có cùng một góc và tỉ số giữa các cạnh tương ứng bằng nhau).
b) Để tính độ dài các cạnh BC, AH, BH, ta có thể sử dụng các công thức sau:
- Độ dài cạnh BC: BC = AB/AC * AH = 6/8 * 10 = 15/2 = 7.5.
- Độ dài đoạn thẳng BH: BH = sqrt(AH^2 - AB^2) = sqrt(10^2 - 6^2) = 8.
- Độ dài đoạn thẳng AH đã được tính ở trên: AH = 10.
Vậy độ dài các cạnh BC, AH, BH lần lượt là 7.5cm, 10cm, 8cm.
Tam giác ABH vuông tại H nên \(BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)
Tam giác ABC vuông tại A có đường cao AH nên \(AB^2=BH.BC\Rightarrow BC=\dfrac{AH^2}{BH}=\dfrac{6^2}{3\sqrt{3}}=4\sqrt{3}\left(cm\right)\)
Vậy \(BC=4\sqrt{3}\left(cm\right)\)
Tam giác ABH vuông tại H
=> BH = \(\sqrt{AB^2-AH^2}=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)
Tam giác ABC vuông tại H, đường cao AH
=> AB2 = BH.BC
Hay 62 = \(3\sqrt{3}\) . BC
=> BC = \(\dfrac{6^2}{3\sqrt{3}}\) = \(4\sqrt{3}\) (cm)
Vậy BC = \(4\sqrt{3}\) (cm)