Cho tam giác ABC có góc B = 60 độ BC=8cm AB+AC=12cm . Tính độ dài AB
giải chi tiết hộ mình với ạ!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a. Ta có: \(AB^2+AC^2=6^2+8^2=36+64=100\)
\(BC^2=10^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\) \(\Rightarrow\Delta\)ABC vuông tại A
b. \(\Delta\)ABC vuông tại A, đường cao AH. Ta có:
AB.AC = AH.BC
hay 6.8 = AH.10
=> AH = \(\dfrac{6.8}{10}=4.8\)
Dựng AH vuông góc với BC, đặt AB = x, ta có : AH = x.sin B = x.sin60 = x.căn 3 / 2
HB = x.cos 60 = x/2 => HC = BC - HB = 8 - x/2 = (16 - x)/2
AC = 12 - AB = 12 - x
Trong tam giác vuông AHC : AH^2 + HC^2 = AC^2
hay (x. căn 3 /2)^2 + (16 - x)^2/4 = (12 - x)^2
<=> 3x^2 + (16 - x)^2 = 4(12 - x)^2
Giải phương trình này tìm được x = 5
Tam giác ABC vuông tại A, B=60.
⇒ Tam giác ABC là 1 nửa tam giác đều
⇒AB = \(\frac{BC}{2}\) =4cm.
AC=12‐4=8cm
Vậy AB=4cm
AC=8cm
A B C 2x 60* H
Kẻ: \(AH\perp BC\).Đặt \(AB=2x\Rightarrow BH=x\Rightarrow AH=x\sqrt{3};HC=8-x\)
Áp dụng định lí Pi-ta-go có:
\(AC=\sqrt{\left(x\sqrt{3}\right)^2+\left(8-x\right)^2}=\sqrt{4x^2-16x+64}\)
Do \(AB+AC=12\Rightarrow2x+\sqrt{4x^2-16x+64}=12\)
Giải phương trình có x = 2,5
\(\Rightarrow AB=2x=2.2,5=5cm\)
Thay số vào tính được AC =))
Tam giác ABC vuông tại A, B=60.
\(\Rightarrow\) Tam giác ABC là 1 nửa tam giác đều
\(\Rightarrow AB=\frac{BC}{2}\) =4; AC=12-4=8
Lời giải:
Kẻ $AH\perp BC$. $(H\in BC)$
Xét tam giác $ABH$ có:
$\frac{BH}{AB}=\cos 60^0=\frac{1}{2}$
$\Rightarrow AB=2BH$
Áp dụng định lý Pitago:
$AH^2=AB^2-BH^2=(2BH)^2-BH^2=3BH^2(1)$
$AH^2=AC^2-CH^2=(12-AB)^2-(8-BH)^2$
$=(12-2BH)^2-(8-BH)^2=3BH^2-32BH+80(2)$
Từ $(1);(2)$ suy ra $3BH^2=3BH^2-32BH+80$
$\Rightarrow BH=2,5$ (cm)
$\Rightarrow AB=2BH=5$ (cm)
AC = 12 - AB = 12 - x
Trong tam giác vuông AHC : AH^2 + HC^2 = AC^2
hay (x. căn 3 /2)^2 + (16 - x)^2/4 = (12 - x)^2
<=> 3x^2 + (16 - x)^2 = 4(12 - x)^2
Giải phương trình này tìm được x = 5
Vậy AB = 5cm
đúng