K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

a.20183

18 tháng 9 2017

a) 2018\(^3-1\)

\(\Rightarrow\left(2018-1\right)\left(2018^2+2018+1\right)\)

\(\Rightarrow2017\left(2018^2+2018+1\right)⋮2017\)

b) 2005\(^3+5^3\)

\(\Rightarrow\left(2005+5\right)\left(2005^2-10025+25\right)\)

\(\Rightarrow2010\left(2005^2-10025+25\right)⋮2010\)

26 tháng 7 2022

=(-1+2)-(3+4)-(5+6)-........-(2017+2018)

=1-7-11-........-4035

=-1009

 

`@` `\text {Ans}`

`\downarrow`

`a)`

`13/50 + 9% + 41/100 + 0,24`

`= 0,26 + 0,09 + 0,41 + 0,24`

`= (0,26 + 0,24) + (0,09 + 0,41)`

`= 0,5 + 0,5`

`= 1`

`b)`

`2018 \times 2020 - 1/2017 + 2018 \times 2019`

`= 2018 \times (2020 + 2019) - 1/2017`

`= 2018 \times 4039 - 1/2017`

`= 8150702`

`c)`

`1/2 + 1/6 + 1/12 + 1/20 +1/30 +1/42`

`=`\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}\)

`=`\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{6}-\dfrac{1}{7}\)

`=`\(1-\dfrac{1}{7}\)

`= 6/7`

12 tháng 6 2023

\(a,\dfrac{13}{50}+9\%+\dfrac{41}{100}+0,24\\ 0,26+0,09+0,41+0,24\\ =\left(0,26+0,24\right)+\left(0,09+0,41\right)\\ =0,5+0,5\\ =1\\ b,2018\times2020-\dfrac{1}{2017}+2018\times2019\\ =2018\times\left(2020+2019\right)-\dfrac{1}{2017}\\ =2018\times4039-\dfrac{1}{2017}\\ =3150702-\dfrac{1}{2017}\\ c,\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\\ =1-\dfrac{1}{2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}.........+\dfrac{1}{6}-\dfrac{1}{7}\\ =1-\dfrac{1}{7}\\ =\dfrac{6}{7}\)

10 tháng 7 2016
Dung 7 hang dang thuc A= ( 2005-1).(2005^2+2005+1)= 2004.4022031 chia het cho 2004 B=(2005+5).(2005^2-2005+1)= 2010.4018019 chia het cho 2010 C=(x^2)^3+1= (x^2+1).(x^4-x^2+1) chia het cho x^2+1
20 tháng 8 2023

\(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)

\(\Rightarrow A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A=1-\dfrac{1}{100}\)

\(\Rightarrow A=\dfrac{99}{100}\)

 

AH
Akai Haruma
Giáo viên
20 tháng 8 2023

Đoạn suy ra đầu tiên cơ sở gì bạn suy ra được như vậy nhỉ?

21 tháng 8 2023

=1/2+1/3+1/4+...+1/100

xét mẫu:có ssh là (100-2):1+1=99 số

tổng là (100+2)*99:2=5940

vậy ta có 1/5940

15 tháng 8 2023

https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881

Cô làm rồi em nhá

15 tháng 8 2023

Câu a, xem lại đề bài

Câu b: 

    P =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)

   Vì  \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\)                =  \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)

         \(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\)                = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)

         \(\dfrac{1}{4^2}\)  < \(\dfrac{1}{3.4}\)               = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) 

     ........................

        \(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)

Cộng vế với vế ta có:  

0< P < 1 - \(\dfrac{1}{2023}\) < 1

Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp

 

15 tháng 8 2023

Câu c:  

C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C 

B =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0 

Cộng vế với vế ta có: 

C+B =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)\(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0

             Mặt khác ta có: 

1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)

Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)