K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

Dăm ba cái bài này . Ui người ta nói nó dễ !!!

a  ) song song \(\Leftrightarrow\hept{\begin{cases}a=a^,\\b\ne b^,\end{cases}}\Leftrightarrow\hept{\begin{cases}m-1=\frac{1}{2}\\m\ne-\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}m=\frac{3}{2}\\m\ne-\frac{1}{2}\end{cases}}\)

b ) Vì ( 1 ) cắt trục hoành tại điểm A có hoành độ bằng 2 nên ta có : x = 2 ; y = 0 

=> điểm A( 2 ; 0 ) 

Thay A vào ( 1 ) ta được : 0 = ( m - 1 ) . 2 + m 

                                  <=> 0 = 2m - 2 +m 

                                  <=> 0 + 2 = 2m + m

                                  <=> 2       = 3m

                                  <=> m     = 2/3 

c ) 

Gọi \(B\left(x_B;y_B\right)\) là điểm tiếp xúc của ( O ) và ( 1 ) 

Ta có bán kính của ( O ) là \(\sqrt{2}\) nên \(x_B=0;y_B=\sqrt{2}\)

=> \(B\left(0;\sqrt{2}\right)\)

Thay B vào ( 1 ) ta được : \(\sqrt{2}=\left(m-1\right).0+m\)

                           \(\Rightarrow m=\sqrt{2}\) 

a) Sửa đề: 5 điểm A,B,D,F,E cùng thuộc một đường tròn

Xét tứ giác ABFE có

\(\widehat{AFB}=\widehat{AEB}\left(=90^0\right)\)

\(\widehat{AFB}\) và \(\widehat{AEB}\) là hai góc cùng nhìn cạnh AB

Do đó: ABFE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Suy ra: A,B,F,E cùng thuộc 1 đường tròn(1)

Xét tứ giác ABDE có 

\(\widehat{ADB}=\widehat{AEB}\left(=90^0\right)\)

\(\widehat{ADB}\) và \(\widehat{AEB}\) là hai góc cùng nhìn cạnh AB

Do đó: ABDE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Suy ra: A,B,D,E cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra A,B,D,F,E cùng thuộc 1 đường tròn(đpcm)

Tâm I của đường tròn này là trung điểm của AB