Bài 5. So sánh:
a) 3^2020 và 10.3^2018
b) 7^245 – 72^44 và 72^44 – 72^43
c) 7.2^13 – 2^15 và 2.3^16 – 17.3^14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g. 5300 = 5100.3 = ( 5100 )3
3453 = 3151.3 = ( 3151)3
Vì...
Các câu trên tương tự, nhiều wá nên lười =)
\(2^{500}\)và \(5^{200}\)
\(2^{500}=\left(2^5\right)^{100}=32^{100}\)
\(5^{200}=\left(5^2\right)^{100}=25^{100}\)
Ta thấy :
\(32^{100}>25^{100}\Rightarrow2^{500}>5^{200}\)
\(31^{11}\) và \(17^{14}\)
\(31^{11}< 32^{12}=\left(2^5\right)^{12}\)
\(17^{14}< 18^{14}=\left(9.2\right)^{14}\)
Ta thấy \(\left(2^5\right)^{12}< \left(9.2\right)^{14}\Rightarrow31^{11}>17^{14}\)
a, 7.213 và 216
ta có: 216 = 213. 23 = 213 .8
vì 7. 213 < 213 .8 nên 7.213 <216
a ) TA có :
A = 1030 = 100010
B = 2100 = ( 210 )10 = 102410
MÀ 100010 < 102410 Do đó A < B
b, Ta có :
A = 3444 = ( 34 )111 = 81111
B = 4333 = ( 43 )111 = 64111
MÀ 81111 > 64111 Do đó A > B
a: Ta có: \(3^{2020}=3^{2018}\cdot3^2=3^{2018}\cdot9\)
mà 9<10
nên \(3^{2020}< 10\cdot3^{2018}\)