Cho tam giác nhọn ABC. Gọi D là điểm nằm giữa B và C. Vẽ các điểm M và N đối xứng với D lần lượt qua AB và AC.
a) Chứng minh rằng góc MAN luôn có số đo không đổi
b) Xác định vị trí của D để MN có độ dài ngắn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: D đối xứng với M qua AB
nên AB là đường trung trực của MD
Suy ra: AM=AD
Xét ΔAMD có AM=AD
nên ΔAMD cân tại A
mà AB là đường trung trực ứng với cạnh đáy MD
nên AB là tia phân giác của \(\widehat{MAD}\)
Ta có: D và N đối xứng nhau qua AC
nên AC là đường trung trực của ND
Suy ra: AN=AD
Xét ΔAND có AN=AD
nên ΔAND cân tại A
mà AC là đường trung trực ứng với cạnh đáy DN
nên AC là tia phân giác của \(\widehat{DAN}\)
Ta có: \(\widehat{MAN}=\widehat{MAD}+\widehat{NAD}\)
\(=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)\)
\(=2\cdot\widehat{BAC}\)
a) Ta có: D đối xứng với M qua AB
=> AB là đường trung trực của MD
Xét tam giác AMD có:
AB là đường trung trực của MD(cmt)
=> Tam giác AMD cân tại A
=> AB là tia phân giác \(\widehat{MAD}\Rightarrow\widehat{MAD}=2\widehat{BAD}\)
CMTT => AC là tia phân giác \(\widehat{DAN}\Rightarrow\widehat{DAN}=2\widehat{DAC}\)
Ta có: \(\widehat{MAN}=\widehat{MAD}+\widehat{DAN}=2\left(\widehat{BAD}+\widehat{DAC}\right)=2\widehat{BAC}\)
=> \(\widehat{MAN}\) có số đo không đổi
a: Ta có: M và D đối xứng với nhau qua AB
nên AB là đường trung trực của MD
=>AM=AD(1)
Ta có: M và E đối xứng nhau qua AC
nên AC là đường trung trực của ME
=>AM=AE(2)
Từ (1) và (2) suy ra AD=AE
b: Ta có: ΔADM cân tại A
mà AB là đường cao
nên AB là tia phân giác của góc DAM(1)
Ta có: ΔAEM cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc EAM(2)
Từ (1) và (2) suy ra \(\widehat{DAM}+\widehat{EAM}=2\cdot\widehat{A}=2x\)
hay \(\widehat{DAE}=2\cdot x\)
a: M đối xứng D qua AB
=>AB là trung trực của MD
=>AM=AD
=>AB là phân giác của góc MAD(1)
M đối xứng E qua AC
=>AC là trung trực của ME
=>AM=AE
=>AC là phân giác của góc MAE(2)
Từ (1), (2) suy ra góc DAE=2*90=180 độ
=>D,A,E thẳng hàng
mà AD=AE
nên A là trung điểm của DE
b: Xét ΔMED có
MA là trung tuyến
MA=DE/2
=>ΔMED vuông tại M
c: Xét ΔAMB va ΔADB có
AM=AD
góc MAB=góc DAB
AB chung
=>ΔAMB=ΔADB
=>góc ADB=90 độ
=>BD vuông góc DE(3)
Xét ΔAMC và ΔAEC có
AM=AE
MC=EC
AC chung
=>ΔAMC=ΔAEC
=>góc AEC=90 độ
=>CE vuông góc ED(4)
Từ (3), (4) suy ra DB//CE
a) Giả sử đã tìm được điểm D trên cung BC sao cho tứ giác BHCD là hình bình hành. Khi đó: BD//HC; CD//HB vì H là trực tâm tam giác ABC nên CH và BH
BD và CD.
Do đó: ABD = 900 và ACD = 900 .
Vậy AD là đường kính của đường tròn tâm O
Ngược lại nếu D là đầu đường kính AD của đường tròn tâm O thì tứ giác BHCD là hình bình hành.
b) Vì P đối xứng với D qua AB nên APB = ADB
nhưng ADB =ACB , ADB = ACB. Do đó: APB = ACB
Mặt khác: AHB + ACB = 1800 APB + AHB = 1800
Tứ giác APBH nội tiếp được đường tròn nên PAB = PHB
Mà PAB = DAB do đó: PHB = DAB
Chứng minh tương tự ta có: CHQ = DAC
Vậy PHQ = PHB + BHC + CHQ = BAC + BHC = 1800
Ba điểm P; H; Q thẳng hàng.
c) Ta thấy APQ là tam giác cân đỉnh A
Có AP = AQ = AD và PAQ = 2BAC không đổi nên cạnh đáy PQ đạt
Ta có: M và D đối xứng nhau qua AB
nên AB là đường trung trực của MD
Suy ra: AD=AM
Xét ΔADM có AD=AM(cmt)
nên ΔADM cân tại A(Định nghĩa tam giác cân)
mà AB là đường trung trực ứng với cạnh đáy MD(gt)
nên AB là tia phân giác của \(\widehat{MAD}\)
Ta có: D và N đối xứng nhau qua AC(gt)
nên AC là đường trung trực của DN
Suy ra: AD=AN
Xét ΔADN có AD=AN(cmt)
nên ΔADN cân tại A(Định nghĩa tam giác cân)
mà AC là đường trung trực ứng với cạnh đáy DN(gt)
nên AC là tia phân giác của \(\widehat{DAN}\)
Ta có: \(\widehat{MAN}=\widehat{MAD}+\widehat{NAD}\)
\(=2\cdot\widehat{BAD}+2\cdot\widehat{CAD}\)
\(=2\cdot\widehat{BAC}\)