Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác AOBC1 có: hai đường chéo AB và OC1 cắt nhau tại trung điểm P mỗi đường chéo
=>AOBC1 là hình bình hành
=> AC1//=OB (1)
Xét tứ giác OBA1C có hai đường chéo OA1và BC cắt nhau tại trung điểm M của mỗi đường chéo.
=> OBA1C là hình bình hành
=> OB//=A1C (2)
Từ (1), (2) => AC1//=A1C
=> AC1A1C là hình bình hành.
=> AA1 và CC1 cắt nhau tại trung điểm của mỗi đường chéo
Chứng minh tương tự:
BC1//=AO//=B1C
=> BC1B1C là hình bình hành
=> BB1 và CC1 cắt nhau tại trung điểm của mỗi đường chéo
=> AA1; BB1; CC1 đồng quy.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó:MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét ΔABH có
M là trung điểm của AB
MI//BH
Do đó:I là trung điểm của AH
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét ΔABH có
M là trung điểm của AB
MI//BH
Do đó: I là trung điểm của AH