Cho tam giác ABC cân tại A. Trên tia đối của tia BC và tia CB lấy theo thú tự điểm D và E sao cho BD=CE.
a, Chứng minh: tam giác ADE cân.
b, Gọi M là trung điểm BC. Chứng minh: AM là tia phân giác của góc DAE và AM vuông góc DE.
c,Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD,AE. Chứng minh:BH=CK.
d, Chứng minh:HK // BC.
Mọi ng giúp mình với.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b: ΔABC cân tại A có AM là trung tuyến
nên AM vuông góc bC
=>AM vuông góc DE
ΔADE cân tại A
mà AM là đường cao
nên AM là phân giác của góc DAE
c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH=góc CAK
=>ΔAHB=ΔAKC
=>HB=KC
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
=>AM⊥DE
Ta có: ΔADE cân tại A
mà AM là đường cao
nên AM là tia phân giác của góc DAE
c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
Suy ra: BH=CK
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
b: Ta có: MB+BD=MD
MC+CE=ME
và MB=MC
và BD=CE
nên MD=ME
Ta có: ΔADE cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác và cũng là đường cao
c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
Suy ra: BH=CK
d: Xét ΔADE có
AH/AD=AK/AE
Do đó: HK//DE
hay HK//BC
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
ΔADE cân tại A
mà AM vuông góc DE
nên AM là phân giác của góc DAE
c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH=góc CAK
=>ΔAHB=ΔAKC
=>BH=KC
d: Gọi giao của BH và CK là O
góc OBC=góc HBD
góc OCB=góc KCE
mà góc HBD=góc KCE
nên góc OBC=góc OCB
=>OB=OC
=>O nằm trên trung trực của BC
=>A,M,O thẳng hàng
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
ΔADE cân tại A
mà AM vuông góc DE
nên AM là phân giác của góc DAE
c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH=góc CAK
=>ΔAHB=ΔAKC
=>BH=KC
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
=>AM\(\perp\)DE
Ta có: ΔADE cân tại A
mà AM là đường cao
nên AM là tia phân giác của góc DAE
a.xét tam giác ABD và tam giác ACE, có:
AB = AC ( ABC cân )
Góc ABD = góc ACE ( 2 góc ngoài của tam giác cân )
BD = CE ( gt )
Vậy xét tam giác ABD = tam giác ACE ( c.g.c )
=> AD = AE ( 2 cạnh tương ứng )
=> tam giác ADE cân tại A
b.Ta có: AM là đường trung tuyến của tam giác cân ABC
=> AM cũng là đường phân giác góc DAE
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
ΔADE cântại A
mà AM vuông góc
nen AM là phân giác của góc DAE
c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔABH=ΔACK
=>BH=CK
d: Gọi O là giao của BH và CK
góc OBC=góc HBD
góc OCB=góc KCE
mà góc HBD=góc KCE
nên góc OBC=góc OCB
=>OB=OC
=>O nằm trên trung trực của BC
=>A,M,O thẳng hàng
a) Gọi H là trung điểm BC. Ta có AH vuông góc vs BC ( Tính chất đường trung tuyến trong tam giác cân )
BD = CE => HD = HE => AH cùng là trung tuyến trong tam giác ADE. AH vuông góc vs BC => ADE cân (Trung tuyến cũng là dg cao)
b) Câu b => M trung vs H. AM là phân giác cũng là tình chất tam giác cân. Còn nếu muốn cm cụ thể thì.
Xét 2 tam giác ADM và tam giác AEM. Ta có AM là cạnh chung. MD = ME (M trung điểm DE). AE = AD Tam giác cân => 2 tam giác = nhau => DPCM
c) Xét 2 tam giác EKC và tam giác DHB vuông tại K và H
Ta có: EC = DB
Góc E = góc D => 2 tam giác = nhau ( Cạnh huyền góc nhọn)
=> BH = CK
a) Ta có: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ACB}\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Xét tam giác ABD và tam giác ACE có:
\(AB=AC\)(tam giác ABC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
\(BD=CE\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)
\(\Rightarrow AD=AE\Rightarrow\Delta ADE\) cân tại A
b) Ta có: \(BM=MC\) (M là trung điểm BC)
\(BD=CE\left(gt\right)\)
\(\Rightarrow BM+BD=MC+CE\Rightarrow MD=ME\)
=> M là trung điểm của DE
Xét tam giác ADE vuông tại A có
AM là đường trung tuyến (M là trung điểm DE)
=> AM là tia phân giác \(\widehat{DAE}\)
Và AM là đường trung trực ΔADE => AM⊥DE
c) Xét tam giác BHD vuông tại H và tam giác CKE vuông tại K có
\(\widehat{HDB}=\widehat{KEC}\)( Tam giác ADE cân tại A)
\(BD=CE\left(gt\right)\)
\(\Rightarrow\Delta BHD=\Delta CKE\left(ch-gn\right)\)
=> BH=CK(2 cạnh tương ứng)
d) Ta có: AD=AE( tam giác ADE cân tại A)
DH=KE( tam giác BHD = tam giác CKE)
=> AD-DH=AE-KE
=> AH=AK
=> Tam giác AHK cân tại A
\(\Rightarrow\widehat{AHK}=\dfrac{180^0-\widehat{BAC}}{2}\)
Mà \(\widehat{ADE}=\dfrac{180^0-\widehat{BAC}}{2}\) (tam giác AADE cân tại A)
\(\Rightarrow\widehat{AHK}=\widehat{ADE}\)
Mà 2 góc này là 2 góc đồng vị
=> HK//DE => HK//BC