K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:

$a=2+\sqrt{5}$

$a-2=\sqrt{5}$

$a^2-4a+4=5\Leftrightarrow a^2-4a-1=0$

$p(a)=a^5-13a^4+7a^3-4a^2-6a$

$=a^3(a^2-4a-1)-9a^2(a^2-4a-1)-28a(a^2-4a-1)-125a^2-34a$

$=-125a^2-34a=-125(a^2-4a-1)-534a-125$

$=-534a-125=-534(2+\sqrt{5})-125=-1193-534\sqrt{5}$

 

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

nhầm

 

22 tháng 11 2018

\(C=6x^2-13x+5\)

\(C=6x^2-3x-10x+5\)

\(C=3x.\left(2x-1\right)-5.\left(2x-1\right)\)

\(C=\left(3x-5\right).\left(2x-1\right)\)

19 tháng 10 2020

a) Đặt t = x2

bthuc <=> t2 - 7t + 16 

Từ đây ta không thể phân tích được :)

b) x3 - 2x2 + 5x - 4 

= x3 - x2 - x2 + x + 4x - 4

= x2( x - 1 ) - x( x - 1 ) + 4( x - 1 )

= ( x - 1 )( x2 - x + 4 )

c) x3 - 2x2 + x - 3 ( phân tích hổng ra :)) )

d) 3x3 - 4x2 + 12x - 4 ( phân tích hổng ra p2 :)) )

e) 6x3 + x2 + x + 1

= 6x3 + 3x2 - 2x2 - x + 2x + 1

= 3x2( 2x + 1 ) - x( 2x - 1 ) + ( 2x + 1 )

= ( 2x + 1 )( 3x2 - x + 1 )

f) 4x3 + 6x2 + 4x + 1

= 4x3 + 2x2 + 4x2 + 2x + 2x + 1

= 2x2( 2x + 1 ) + 2x( 2x + 1 ) + ( 2x + 1 )

= ( 2x + 1 )( 2x2 + 2x + 1 )

19 tháng 10 2020

:) Quỳnh đặt ĐK đi nè :3 \(x^2=t\left(t\ge0\right)\)

a: \(=-2x^2\cdot3x+2x^2\cdot4X^3-2x^2\cdot7+2x^2\cdot x^2\)

\(=8x^5+2x^4-6x^3-14x^2\)

b: \(=2x^3-3x^2-5x+6x^2-9x-15\)

\(=2x^3+3x^2-14x-15\)

c: \(=\dfrac{-6x^5}{3x^3}+\dfrac{7x^4}{3x^3}-\dfrac{6x^3}{3x^3}=-2x^2+\dfrac{7}{3}x-2\)

d: \(=\dfrac{\left(3x-2\right)\left(3x+2\right)}{3x+2}=3x-2\)

e: \(=\dfrac{2x^4-8x^3-6x^2-5x^3+20x^2+15x+x^2-4x-3}{x^2-4x-3}\)

=2x^2-5x+1

29 tháng 4 2020

1) \(\frac{x-3}{2}+\frac{4x+1}{3}=\frac{2x-7}{6}\)

<=> 3(x - 3) + 2(4x + 1) = 2x - 7

<=> 3x - 9 + 8x + 2 = 2x - 7

<=> 11x - 7 = 2x - 7

<=> 11x - 7 - 2x = -7

<=> 9x - 7 = -7

<=> 9x = -7 + 7

<=> 9x = 0

<=> x = 0

a: \(P\left(x\right)+Q\left(x\right)=9x^3-6x^2+x-3\)

\(P\left(x\right)-Q\left(x\right)=-x^3-6x^2+13x-7\)

b: \(P\left(1\right)=4-6+7-5=-2+7-5=0\)

\(P\left(-2\right)=-32-24-14-5=-73\)

1 tháng 2 2017

a)    x3-x2-21x+45=0

<=> x3+5x2-6x2-30x+9x+45=0

<=> (x+5)(x2-6x+9)=0

<=> (x+5)(x2-3x-3x+9)=0

<=> (x+5)(x-3)2=0

 Vậy S={-5;3}

b)    X3+3X2+4X+2=0

<=>  X3+X2+2X2+2X+2X+2=0

<=> (X+1)(X2+2X+2)=0

VÌ  X2+2X+2 >=0

NÊN S={-1}

C)    X4+7X-8=0

<=> X4-X3+X3-X2+X2-X+8X-8=0

<=> (X-1)(X3+X2+X+8)=0

VÌ X3+X2+X+8>=0

NÊN S={1}

D)     6X4-X3-7X2+X+1=0

<=>  6X4-6X3+5X3-5X2-2X2+2X-X+1=0

<=>  (X-1)(6X3+5X2-2X-1)=0

<=> (X-1)(6X3-3X2+8X2-4X+2X-1)=0

<=> (X-1)(2X-1)(3X2_4X+1)=0

<=>  (X-1)(2X-1)(3X2-3x-x+1)=0

<=> (X-1)2(2X-1)(3x-1)=0

vậy S={1/3;1/2;1}