K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2015

 

Do a ∈ Z + => 5b = a3 + 3a2 + 5 > a + 3 = 5c => 5b > 5c => b>c => 5b  5c => (a3 + 3a2 + 5)  ( a+3) => a2 (a+3) + 5  a + 3

 Mà a2 (a+3)  a + 3 [do (a+3)  (a+3)] => 5  a + 3 => a + 3 ∈ Ư (5)  => a+ 3 ∈ { ± 1 ; ± 5 } (1) Do a ∈ Z+ => a + 3 ≥ 4 (2) Từ (1) và (2) => a + 3 = 5 => a = 5 – 3 =2 

. => 23 + 3 . 22 + 5 = 55 25 = 5b 52 = 5b b = 2 2 + 3 = 5c 5 = 5c 5 = 5c c = 1 Vậy : a = 2 b = 2 c = 1 

. => 23 + 3 . 22 + 5 = 55 25 = 5b 52 = 5b b = 2 2 + 3 = 5c 5 = 5c 5 = 5c c = 1 Vậy : a = 2 b = 2 c = 1 

26 tháng 4 2023

 Câu 5. Tìm các số x thỏa mãn cả hai bất phương trình sau x>3 và x<8

A. x<8  

b. 3<x<8

c. 3>x>8

d. x>3

câu 6: tìm các số x thỏa mãn cả 2 bất phương trình sau x>5 và x>3

A. x<5

B. 3<x<5

C. x>3

D. c>5

31 tháng 12 2015

a3 + 3a2 + 5 = 5b

=> a2(a + 3) + 5 = 5b

=> a2.5c + 5 = 5b (vì a + 3 = 5c

=> a2.5c - 1 + 1 = 5b - 1 (chia cả 2 vế cho 5) (1)

=> c - 1 = 0 hoặc b - 1 = 0

+) b = 1, khi đó ko thoả mãn

+) c = 1 => a = 2 => b = 2

16 tháng 12 2016

tại sao c-1 hoặc b-1 =0 nhi giải được cho

AH
Akai Haruma
Giáo viên
13 tháng 4 2021

Lời giải:

Bạn nhớ tới bổ đề sau: Với $a,b>0$ thì $a^3+b^3\geq ab(a+b)$.

Áp dụng vào bài:

$5a^3-b^3\leq 5a^3-[ab(a+b)-a^3]=6a^3-ab(a+b)$

$\Rightarrow \frac{5a^3-b^3}{ab+3a^2}\leq \frac{6a^3-ab(a+b)}{ab+3a^2}=\frac{6a^2-ab-b^2}{3a+b}=\frac{(3a+b)(2a-b)}{3a+b}=2a-b$

Tương tự:

$\frac{5b^3-c^3}{bc+3b^2}\leq 2b-c; \frac{5c^3-a^3}{ca+3c^2}\leq 2c-a$

Cộng theo vế:

$\Rightarrow \text{VT}\leq a+b+c=3$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

6 tháng 8 2020

Ta đi chứng minh: \(\frac{5b^3-a^3}{ab+3b^3}\le2b-a\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)

Một cách tương tự:\(\frac{5c^3-b^3}{bc+3c^3}\le2c-b;\frac{5a^3-c^3}{ca+3a^2}\le2a-c\)

Cộng lại thì:

\(LHS\le a+b+c=3\)

Đẳng thức xảy ra tại a=b=c=1

1 tháng 2 2016

\(2a=3b\Rightarrow\frac{a}{3}=\frac{b}{2}\left(1\right)\)

\(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\left(2\right)\)

Từ (1) và (2) => \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

=> \(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)

Theo t/c dãy tsbn:

\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=-\frac{30}{15}=-2\)

=> a/21 = -2 => a = -42

=> b/14 = -2 => b = -28

=> c/10 = -2 => c = -20

Vậy a + b + c =-42 - 28 - 20 = -90.

1 tháng 2 2016

Khi do a+b+c=-90

25 tháng 1 2019

Vì a, b, c không âm và có tổng bằng 1 nên  0 ≤ a , b , c ≤ 1 ⇒ a ( 1 − a ) ≥ 0 b ( 1 − b ) ≥ 0 c ( 1 − c ) ≥ 0 ⇒ a ≥ a 2 b ≥ b 2 c ≥ c 2 ⇒ 5 a + 4 ≥ a 2 + 4 a + 4 = ( a + 2 ) 2 = a + 2 T ư ơ n g   t ự :   5 b + 4 ≥ b + 2 ; 5 c + 4 ≥ c + 2 ⇒ 5 a + 4 + 5 b + 4 + 5 c + 4 ≥ ( a + b + c ) + 6 = 7   ( đ p c m )

1 tháng 1 2016

Ta co :

a^3 +3a^2+5=5^b

<=>a^2(a+3)+5=5^b

<=>a^2.5^c+5=5^b

<=>a^2.5^c-1+1=5^b-1

=>b-1=0rc-1=0

Nếu b-1=0 thì thay vào ko thỏa mãn 

Neu c-1=0thi c=1 suy ra a=2 suy ra b=2