Tìm số nguyên a,b,c thỏa mãn a3+3a2 +5 =5b và a+3=5c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 5. Tìm các số x thỏa mãn cả hai bất phương trình sau x>3 và x<8
A. x<8
b. 3<x<8
c. 3>x>8
d. x>3
câu 6: tìm các số x thỏa mãn cả 2 bất phương trình sau x>5 và x>3
A. x<5
B. 3<x<5
C. x>3
D. c>5
a3 + 3a2 + 5 = 5b
=> a2(a + 3) + 5 = 5b
=> a2.5c + 5 = 5b (vì a + 3 = 5c)
=> a2.5c - 1 + 1 = 5b - 1 (chia cả 2 vế cho 5) (1)
=> c - 1 = 0 hoặc b - 1 = 0
+) b = 1, khi đó ko thoả mãn
+) c = 1 => a = 2 => b = 2
Lời giải:
Bạn nhớ tới bổ đề sau: Với $a,b>0$ thì $a^3+b^3\geq ab(a+b)$.
Áp dụng vào bài:
$5a^3-b^3\leq 5a^3-[ab(a+b)-a^3]=6a^3-ab(a+b)$
$\Rightarrow \frac{5a^3-b^3}{ab+3a^2}\leq \frac{6a^3-ab(a+b)}{ab+3a^2}=\frac{6a^2-ab-b^2}{3a+b}=\frac{(3a+b)(2a-b)}{3a+b}=2a-b$
Tương tự:
$\frac{5b^3-c^3}{bc+3b^2}\leq 2b-c; \frac{5c^3-a^3}{ca+3c^2}\leq 2c-a$
Cộng theo vế:
$\Rightarrow \text{VT}\leq a+b+c=3$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Ta đi chứng minh: \(\frac{5b^3-a^3}{ab+3b^3}\le2b-a\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)
Một cách tương tự:\(\frac{5c^3-b^3}{bc+3c^3}\le2c-b;\frac{5a^3-c^3}{ca+3a^2}\le2a-c\)
Cộng lại thì:
\(LHS\le a+b+c=3\)
Đẳng thức xảy ra tại a=b=c=1
\(2a=3b\Rightarrow\frac{a}{3}=\frac{b}{2}\left(1\right)\)
\(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\left(2\right)\)
Từ (1) và (2) => \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
=> \(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
Theo t/c dãy tsbn:
\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=-\frac{30}{15}=-2\)
=> a/21 = -2 => a = -42
=> b/14 = -2 => b = -28
=> c/10 = -2 => c = -20
Vậy a + b + c =-42 - 28 - 20 = -90.
Vì a, b, c không âm và có tổng bằng 1 nên 0 ≤ a , b , c ≤ 1 ⇒ a ( 1 − a ) ≥ 0 b ( 1 − b ) ≥ 0 c ( 1 − c ) ≥ 0 ⇒ a ≥ a 2 b ≥ b 2 c ≥ c 2 ⇒ 5 a + 4 ≥ a 2 + 4 a + 4 = ( a + 2 ) 2 = a + 2 T ư ơ n g t ự : 5 b + 4 ≥ b + 2 ; 5 c + 4 ≥ c + 2 ⇒ 5 a + 4 + 5 b + 4 + 5 c + 4 ≥ ( a + b + c ) + 6 = 7 ( đ p c m )
Ta co :
a^3 +3a^2+5=5^b
<=>a^2(a+3)+5=5^b
<=>a^2.5^c+5=5^b
<=>a^2.5^c-1+1=5^b-1
=>b-1=0rc-1=0
Nếu b-1=0 thì thay vào ko thỏa mãn
Neu c-1=0thi c=1 suy ra a=2 suy ra b=2
Do a ∈ Z + => 5b = a3 + 3a2 + 5 > a + 3 = 5c => 5b > 5c => b>c => 5b 5c => (a3 + 3a2 + 5) ( a+3) => a2 (a+3) + 5 a + 3
Mà a2 (a+3) a + 3 [do (a+3) (a+3)] => 5 a + 3 => a + 3 ∈ Ư (5) => a+ 3 ∈ { ± 1 ; ± 5 } (1) Do a ∈ Z+ => a + 3 ≥ 4 (2) Từ (1) và (2) => a + 3 = 5 => a = 5 – 3 =2
. => 23 + 3 . 22 + 5 = 55 25 = 5b 52 = 5b b = 2 2 + 3 = 5c 5 = 5c 5 = 5c c = 1 Vậy : a = 2 b = 2 c = 1
. => 23 + 3 . 22 + 5 = 55 25 = 5b 52 = 5b b = 2 2 + 3 = 5c 5 = 5c 5 = 5c c = 1 Vậy : a = 2 b = 2 c = 1